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Cell composition inference and identification of layer-
specific spatial transcriptional profiles with POLARIS
Jiawen Chen1, Tianyou Luo1, Minzhi Jiang2, Jiandong Liu3, Gaorav P. Gupta4,5†, Yun Li1,6,7†*

Spatial transcriptomics (ST) technology, providing spatially resolved transcriptional profiles, facilitates ad-
vanced understanding of key biological processes related to health and disease. Sequencing-based ST technol-
ogies provide whole-transcriptome profiles but are limited by the non–single cell–level resolution. Lack of
knowledge in the number of cells or cell type composition at each spot can lead to invalid downstream analysis,
which is a critical issue recognized in ST data analysis. Methods developed, however, tend to underuse histo-
logical images, which conceptually provide important and complementary information including anatomical
structure and distribution of cells. To fill in the gaps, we present POLARIS, a versatile ST analysis method that
can perform cell type deconvolution, identify anatomical or functional layer-wise differentially expressed (LDE)
genes, and enable cell composition inference from histology images. Applied to four tissues, POLARIS demon-
strates high deconvolution accuracy, accurately predicts cell composition solely from images, and identifies LDE
genes that are biologically relevant and meaningful.
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INTRODUCTION
Molecular analysis of mRNA patterns in histological tissue sections
is a key component of biomedical research and diagnostics. The de-
velopment of novel spatial transcriptomic (ST) technologies has ad-
vanced dramatically over the past few years. There are two main
categories of ST technologies: imaging-based or sequencing-
based. Technologies based on imaging directly image individual
RNA molecules within single cells (1, 2). Sequencing-based tech-
niques first label spatial spots on histological tissue sections with
unique barcodes to indicate their two-dimensional spatial positions,
and use RNA sequencing (RNA-seq) to provide gene expression
quantifications for each spot along with the spatial coordinates (3,
4). Commonly used methods include MERFISH (1), seqFISH+ (5)
in the former category, and 10X Genomics’ Visium platform (3) in
the latter category. More information can be found in recent review
papers (6–8). Some of the sequencing-based techniques (exemplary
platforms include Spatial Transcriptomics and Visium) also provide
a co-registered hematoxylin and eosin (H&E)–stained histology
image for the analyzed sample. Empowered by these technologies,
we can obtain gene expression profiling with retained spatial infor-
mation and histological images, which enable researchers and clini-
cians to gain an improved level of insight into complex
tissue samples.
In parallel to these technological developments, computational

methods to analyze spatial data derived from tissue samples have
substantially advanced. For instance, focusing on histology
images, multiple machine learning and deep learning methods

have been developed to maximally extract information from these
images (9–12). In the presence of pathological annotations, histol-
ogy images can be used for various purposes including cell segmen-
tation (13, 14), tissue type registration (15), mutation rate inference
(16, 17), and gene expression prediction (12). Most of these tasks,
however, require pathologists to fully annotate each cell in the his-
tological image, entailing substantial manual time and human re-
sources. This pathologist annotation is currently unavailable for
the vast majority of publicly available ST data, thus making using
traditional cell detection methods to perform ST deconvolution in-
accessible. In the field of ST, histology imaging has primarily been
used to predict gene expression and perform tissue registration,
where the image data are usually subject to a pretrained model to
extract image features (9, 10, 12). Several popular pretrained
models, such as convolutional neural networks, stacked sparse au-
toencoders, and masked autoencoders (MAEs), have been used as a
first step to reduce image dimensions and demonstrate advantages
in many applications (9, 10, 12, 13, 15). However, cell composition
inference has not benefited from these models yet. In recent litera-
ture, histology images have been used to improve deconvolution ac-
curacy (18, 19), but methods that can predict cell composition solely
from histology images are currently unavailable.
Besides the histology image, ST data allow for the extraction and

revelation of tissue structure through coordinated gene expression.
Researchers have developed methods such as SPARK (20) and Spa-
tialDE (21) for identifying genes whose expression varies within a
tissue slice, known as spatially differentially expressed (SDE) genes.
Gene expression changes spatially across spots within a tissue slice,
often reflecting some underlying structured heterogeneity such as
anatomical layers, clusters of similar spots, and/or spatial
domains. This structured heterogeneity motivates the development
of ST clustering methods including BayesSpace to identify layers/
clusters within each ST slice (11, 22, 23). As aforementioned, the
identified layers often correspond to different functions or morpho-
logical changes in the tissue (22, 24, 25). The across-spot variation
in expression can be largely attributed to three factors: variation in
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cell number, variation in cell composition, and true spatially driven
variation in gene expression profile (Fig. 1A).
When the expression variation is truly driven by difference in

spatial coordinates (in contrast to difference in cell number or com-
position), we can consider having sub-cell types located in different
spatial regions (Fig. 1A). However, when SDE genes are detected by
the aforementioned methods, the identified spatial difference is a
result of the interplay of all three factors, and it is difficult to distin-
guish genes that are truly SDE from those that merely appear so due
to differential cell number or composition across spatial spots. We
would be able to differentiate among the driving factors if we had
single-cell resolution data with the entire transcriptome or at least a
large number of genes measured. However, in practice, we normally

do not have this luxury: We have either data from imaging-based
technologies that are single-cell resolution but measure only a
small number of genes or data from sequencing-based methods
that provide transcriptome-wide measurement but are limited in
resolution. Sequencing-based ST methods have spatial spots of 2
to 100 μm in diameter, implying that each spot can easily contain
tens of cells of different cell types. Lacking ideal (i.e., single-cell res-
olution with many genes measured) data motivates the develop-
ment of computational methods to infer variation in gene
expression profile across layers while simultaneously estimating
and adjusting for the estimated cell number and composition.
As a matter of fact, lack of knowledge in the number of cells at

each spot or the cell type composition itself has been recognized as a

Fig. 1. POLARIS overview. (A) Three reasons that can explain gene expression variation across spots. Each circle represents a spatial spot. Compared to the leftmost spot,
the three spots on the right differ primarily in cell number, cell composition, and gene expression profile. (B) POLARIS workflow. POLARIS takes as input single-cell
reference and annotated spatial data, infers cell type–specific gene expression profiles, and identifies layer-specific expression profiles. When a co-registered histology
image (as an optional input) is provided, POLARIS will additionally train an image network. The output of POLARIS includes inferred spot-level cell type composition,
identified LDE genes, and a pretrained POLARIS image network that can be applied to independent images. This figure is created via BioRender.
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critical issue in ST data analysis because failure to adjust for this ac-
curately can lead to invalid downstream analyses. To address this
problem, a number of ST deconvolution methods have been devel-
oped (18, 26–30). However, most ST deconvolution methods
assume that the gene expression profile for the same cell type is in-
variant across the entire tissue sample, which is a strong assumption
whose violation will result in inaccurate cell composition inference.
Methods such as DestVI that assume a continuous or smoothly
changing gene expression profile across the tissue, however, have
exhibited inconsistent performance across tissue types (6, 31).
Therefore, how to model layer-specific gene expression variation
and use histological images to infer cell composition is a problem
that remains unsolved.
Here, we present POLARIS (Probabilistic-based cell cOmposi-

tion inference with LAyer infoRmatIon Strategy) to perform cell
type deconvolution and infer layer-wise differentially expressed
(LDE) genes (Fig. 1B). POLARIS integrates single-cell RNA-seq
(scRNA-seq) reference and ST data with annotated layer informa-
tion. By examining histology images and the coordinated expression
profile, one can reasonably infer layers or subregions that corre-
spond to different biological functions (e.g., cancer versus non-
cancer regions in a tumor biopsy, different layers in a brain
cortical sample, and ventricle and atrium areas in heart). By explic-
itly allowing and modeling layer-specific gene expression patterns,
POLARIS not only is capable of identifying cell type composition
with high accuracy but also could identify LDE genes while simul-
taneously correcting for differential cell composition. An additional
key characteristic of POLARIS is its flexibility to optionally leverage
histology images. To our knowledge, POLARIS is the first ST decon-
volution method that can predict cell composition purely from a
histological image. This functionality also empowers POLARIS to
infer super-resolution cell composition based on images of areas
without gene expression measurements (i.e., areas in between
spots) as well as to predict cellular composition based purely on
an original H&E-stained image. The performance of POLARIS
was evaluated on data from multiple tissues including the mouse
cortex, developing human heart, and human epidermal growth
factor receptor 2–positive (HER2+) breast cancer samples.
POLARIS robustly demonstrates high deconvolution accuracy
across tissues compared to other state-of-the-art deconvolution
methods, accurately predicts cell composition solely from images,
and identifies LDE genes that are biologically relevant and mean-
ingful. Our results showcase the advantages of POLARIS in the fol-
lowing three aspects: deconvolution accuracy, LDE gene
identification, and prediction with image.

RESULTS
POLARIS method overview
POLARIS is a probabilistic-based inference method that assumes
that gene expression counts in both scRNA-seq reference data
and ST data follow a negative binomial distribution. As a first
step, POLARIS maximizes likelihood to infer cell type–specific
gene expression profiles from scRNA-seq reference (Fig. 1B). The
gene expression profile of each spot in ST data can then be
viewed as a weighted sum of the negative binomial distribution
derived from the scRNA-seq reference, where the weights are
based on spot-level cell composition. As opposed to assuming
that cell type–specific gene expression profiles are invariant

throughout a whole tissue slice, POLARIS assumes that only spots
in similar biological or anatomical layers share the same gene ex-
pression profiles by introducing a layer-specific location parameter.
Explicitly modeling layers is a unique feature of our POLARIS
method. POLARIS accepts any user-specified layer annotations,
e.g., derived manually (from pathologist annotation) or computa-
tionally [based on either morphological features or gene expression,
e.g., using BayesSpace (22)]. Note that the layer-specific parameters
cannot be inferred from single-cell reference because there is no
layer information by the nature of data generation. Using ST data
with layer annotations, POLARIS enables layer-specific inference.
By introducing the layer-specific shift parameters (Supplementary
Materials), we can obtain an updated location parameter for each
layer in the ST data, allowing cell type–specific gene expression pro-
files to vary across layers. By multiplying the updated location pa-
rameter with the cell composition parameter as well as the
parameter to account for technical/batch effects, we simultaneously
model the impact of cell composition and spatial location (as re-
flected by layers) on cell type–specific gene expression while con-
trolling for potential batch effects. Parameters can be estimated
using maximum a posteriori (MAP) estimation (Supplementary
Materials). So far, we have focused on inference with gene expres-
sion data only. When a co-registered histology image is available,
POLARIS first uses MAE (32) to extract features from the image
tile of each spot and the image tile of its neighborhood. These
two extracted features are then combined and used as inputs to
build POLARIS’s image network (Fig. 1B). The output of POLAR-
IS’s image network is cell composition for any input image (which
can be from a completely independent histological image). The
output of POLARIS includes inferred spot-level cell type composi-
tion and layer-specific gene expression profiles, as well as a trained
POLARIS image network. The layer-specific gene expression pro-
files enable identification of LDE genes, and the pretrained
POLARIS image network allows resolution enhancement and cell
composition inference from a new histology image.

POLARIS attains high deconvolution accuracy
The deconvolution accuracy of POLARIS was assessed both
through simulation and in single-cell resolution ST data. Specifi-
cally, we simulated cells with gene expression counts from cell
type– and layer-specific negative binomial distributions and ran-
domly selected cells to create spot-level gene expression. For
single-cell resolution real ST datasets, we clumped cells into spots
according to their coordinates to mimic low-resolution spot-level
ST data. We used data where we have cell type labels for the
single cells such that we have the true cell type mixture in each
clumped pseudo-spot. We quantified the performance using root
mean squared error (RMSE) where a smaller RMSE corresponds
to better performance. We compared POLARIS with five state-of-
the-art methods: CARD (26), DestVI (29), RCTD (28), stereoscope
(27), and SPOTlight (30). These methods were selected according to
their specific methodological features and/or their high perfor-
mance in previous benchmarking studies (Supplementary Materi-
als) (6, 31).
We began with a simulated scenario where all spots and layers

share a similar composition of cells, but with layers differing in
terms of their gene expression profiles. Under this scenario, gene
expression variations are solely the result of variations in gene ex-
pression profiles across layers. Specifically, we first simulated a
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dataset with two “biological” layers, with cells from six cell types and
expression values for 100 genes generated. We first simulated the
layer of each cell, and then the gene expression values for the cell
were drawn from negative binomial distributions according to its
layer and cell type. We then constructed pseudo-spots by randomly
selecting 10 to 16 cells from each layer. Specifically, we generated
200 spots with 50 spots in layer 1 and 150 spots in layer 2 (Supple-
mentary Materials). Under this simulation framework, genes could
be classified into three categories: up-regulated in layer 1 (e.g.,
Gene36), up-regulated in layer 2 (e.g., Gene100), and no substantial
difference between layers (e.g.,Gene95) (Fig. 2, A and B, and fig. S1).
The largest log2 fold change is seen in Gene36 and Gene100, and
most genes display similar or nondifferential expression patterns
across layers. Applied to the simulated data, POLARIS outperforms
all other methods as manifested by its lowest RMSE (Fig. 2C).
We further assessed POLARIS’s deconvolution performance in a

real single-cell resolution ST data from the mouse primary visual
cortex (VISp) region, a well-structured region in mouse cortex
that has been extensively studied (2, 33). Anatomical structure,
major cell types, and layer-specific gene markers provide informa-
tion about the layered and segmented structure of the mouse VISp
(Fig. 2, D to F) (33, 34). We used single-cell resolution ST data from
the STARmap platform (2), which consists of 1020 genes measured
in 973 cells. We divided the cells into 356 pseudo-spots each of 400
× 400 square pixels (Fig. 2D). To perform deconvolution, we used
the internal reference (that is, the STARmap single-cell data itself as
the reference). In this way, any systematic differences between the
reference and the target ST data are eliminated as potential
factors that may impair performance. This internal reference eval-
uation provides a baseline (or upper bound) for measuring the per-
formance of deconvolution methods (6). Because layer annotation
is required when using POLARIS, we used BayesSpace (22) to
cluster the constructed pseudo-spots, resulting in five distinct clus-
ters, reflecting the expected layer structure of mouse VISp (Fig. 2E).
In this mouse VISp dataset, POLARIS still achieves among the best
performance in terms of RMSE (Fig. 2G). Moreover, POLARIS,
based on its inferred cellular composition, successfully recovers
the layer structure of mouse VISp (from top to bottom: Smc, eL2,
eL3, eL4, eL5, eL6-1, eL6-2, Oligo, and HPC; Fig. 2H).
In addition, we tested POLARIS on the developing human heart

tissue generated from the in situ sequencing (ISS) platform (Fig. 2I)
(35). The heart ISS data are also a single-cell resolution ST data, con-
sisting of 24,371 cells and with only 65 genes measured in each cell.
We gridded the cells into pseudo-spots, each of dimension 454 ×
424 square pixels (Fig. 2J). The main purpose of this assessment
is to evaluate POLARIS’s performance with a limited number of
genes. Instead of using the internal reference (ISS data itself ), we
used a scRNA-seq reference obtained from a similar biological
sample (36). Consequently, we can also evaluate the deconvolution
performance when the reference and ST data are not perfectly
matched. The heart ISS data provide us with a 4′,6-diamidino-2-
phenylindole (DAPI)–stained histology image, allowing us to
measure the performance of POLARIS by including the histology
image as an additional input (Fig. 2I and Materials and Methods).
We clustered the spots into four layers using BayesSpace (Fig. 2K).
The BayesSpace inferred layers correspond reasonably well to the
anatomy of the heart (red, epicardium; green, ventricles; light
blue, atria; dark blue, outflow tract). POLARIS has maintained its
best performer position. Specifically, POLARIS achieves the

lowest/best mean of MSE (Fig. 2L). Despite the fact that the DAPI
staining only contains one color channel, POLARIS with image
input is able to effectively infer the type of cell, achieving accuracy
close to the best performers.

Polaris identifies layer-specific gene expression pattern
Amajor feature of POLARIS is its ability to model layer-specific pa-
rameters. The layer/structure of a tissue can be reflected in multiple
dimensions, such as morphology, gene expression, and other omics
levels. POLARIS focuses on leveraging the rich gene expression in-
formation provided by ST data. As detailed above, cell density, cel-
lular composition, and the “real” SDE genes can all contribute to the
observed gene expression variation. By incorporating layer-specific
parameters into the cell type deconvolution process, POLARIS is
able to identify these LDE genes while taking into account differen-
tial cell composition. POLARIS quantifies statistical significance for
LDE genes using permutation tests, and magnitude of effect using
log2 fold change in mean gene expression, based on the inferred
layer-specific mean parameters (Materials and Methods).
Through the elimination of potential confounding effects of cell
composition, POLARIS ensures that the LDE genes identified are
differentially expressed genes truly due to spatial factors.
As a starting point for assessing POLARIS’ ability to infer LDE

genes, we performed simulations where we know the truth. Follow-
ing the same simulation framework used above to evaluate decon-
volution efficiency, we evaluated the layer-specific location
parameters. Again, because cellular composition is simulated
from the same distribution across spots regardless of layer status,
observed gene expression variation can only be attributed to truly
differential expression patterns across layers (Fig. 2, A and B). Con-
sequently, genes could be classified into three categories: layer 1–en-
riching genes, layer 2–enriching genes, and genes with similar
expression levels across layers (Figs. 2B and 3A). We applied
POLARIS to perform deconvolution and simultaneously perform
the permutation test and calculate the log2 fold change in mean ex-
pression, layer 1 over layer 2. POLARIS successfully identified genes
that have different expression profiles across layers (Fig. 3B). The
predicted log2 fold change well captures the true log2 fold change
(Fig. 3C) when all the genes have layer-specific gene expression pro-
files. In this particular simulation, we generated the genes such that
all of them have layer-specific expression profiles, although the ex-
pression difference between layers of some genes could be small (de-
tailed in the Supplementary Materials). To investigate the impact of
the proportion of LDE genes on POLARIS performance, we further
conducted simulations using the same setting but varying the pro-
portion of genes with layer-specific expression profiles (fig. S2). As
the proportion of LDE genes increases from 0 to 1, Uniform Man-
ifold Approximation and Projection (UMAP) representations of
cells become more separated by layers. It is difficult, however, to
identify the subtypes of cells based on the UMAP representation,
even with prior knowledge of the layer information when the pro-
portion of LDE genes is <0.5, thus failing to capture heterogeneity
across layers (fig. S2A). POLARIS well controlled the type I error
and accurately estimated the true log2 fold change regardless of
the proportion of LDE genes (fig. S2B). POLARIS also shows satis-
factory performance on a sparse simulation setting (fig. S3). Note
that layer-specific parameters are inferred only from the ST data
because we do not have layer information from the scRNA-seq
reference.
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Fig. 2. Deconvolution accuracy of POLARIS. Simulation: (A) Cell type composition of the simulated ST data. (B) Three categories of gene expression pattern: up-reg-
ulated in layer 1, up-regulated in layer 2, and no substantial difference across layers. (C) RMSE of POLARIS along with other state-of-the-art methods on simulated data. On
mouse VISp STARmap data: (D) Cell map (left) and clumped pseudo-spots (right) along with their cell compositions visualized by pie charts. (E) BayesSpace identified
clusters, consistent with layer structure of mouse VISp. (F) Nissl staining (left) and anatomical annotations (right) from the Allen Mouse Brain Atlas and Allen Reference
Atlas—Mouse Brain. The black lined area indicates the layer structure of the VISp region. (G) RMSE of POLARIS along with other state-of-the-art methods on mouse VISp
STARmap data. (H) POLARIS-inferred spot-level composition of the eight major cell types, along cortex depth. On developing human heart ISS data: (I) Processed DAPI-
stained histology image of the developing human heart ISS data. (J) Clumped pseudo-spots in the ISS data along with their cell compositions visualized by pie charts. (K)
BayesSpace identified clusters in the ISS data. (L) RMSE of POLARIS along with RMSE of other state-of-the-art methods on the heart ISS data.
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Fig. 3. LDE genes identified by POLARIS on three datasets. On simulated data: (A) True log2 fold change of mean gene expression, layer 1 over layer 2. (B) POLARIS-
inferred log2 fold change of mean gene expression, layer 1 over layer 2. POLARIS-identified LDE genes are colored as pink, otherwise gray. (C) POLARIS-inferred log2 fold
change of gene expression across layers achieves high correlation (Pearson’s correlation = 0.974) with the true log2 fold change. On developing human heart data: (D)
POLARIS-inferred log2 fold change of gene expression across layers. POLARIS-identified LDE genes are colored as pink, otherwise gray. (E) Left: Observed mean gene
expression in scRNA-seq data (top) and POLARIS-inferred gene expression location parameter (bottom) of each cell type across layers. Lines are colored by cell types. X
axis indicates layer status: From left to right is layer 0, 1, 2, and 3. Right: Gene expression of TCF21 and EBF2 in the fibroblast-like (coronary and mediastinal vasculature
related) cells. On HER2+ breast cancer data: (F) Pathologist annotation on slide A1. (G) POLARIS-inferred cell composition. (H) POLARIS-inferred cancer epithelial cell
proportion. (I) Distribution of POLARIS-inferred cancer epithelial cell proportions in each layer [color scheme is the same as in (E)]. (J) POLARIS-inferred log2 fold
change of gene expression across layers. Points with absolute value greater than 1 are colored as pink, otherwise gray. (K) Gene expression profiles of POLARIS-identified
LDE genes in the cancer in situ layer.
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Encouraged by POLARIS’s performance in simulated data, we
proceeded to further test POLARIS’s capability to detect LDE
genes using real datasets. We began with the developing human
heart single-cell resolution ISS ST data. We created pseudo-spots
from the dataset and applied POLARIS to the pseudo-spots,
feeding as input spot-level gene expression information along
with layer information inferred from BayesSpace. LDE genes detect-
ed by POLARIS have differential patterns of gene expression in dif-
ferent layers (Fig. 3, D and E). Although cell type affects gene
expression, layer status also plays an essential role in shaping the
spot-level expression profile. Furthermore, these layer-specific
changes are shared by many cell types. For example, the expression
of EBF2 in most cell types is highest in layer 3 compared to the other
three layers (Fig. 3E). POLARIS, by making accurate inference of
gene expression profiles in different cell types, has successfully cap-
tured the LDE gene and has recovered the layer-specific variation
present in most cell types. We further explore the links between
LDE genes and biological functions of each layer. For example,
among the LDE genes, TCF21 has the lowest mean gene expression
in layer 3 (Fig. 3, D and E) where fibroblast-like cells are enriched
(Fig. 2, J and K). Transcription factor 21 (TCF21) encoded by
TCF21 plays a crucial role in regulating cell differentiation and
cell fate determination through epithelial-mesenchymal transfor-
mations during cardiac development. More specifically, TCF21
has been reported to be capable of promoting the development of
cardiac fibroblasts and inhibiting differentiation of epicardial cells
into vascular smoothmuscle cells (37), consistent with our observed
down-regulation in layer 3.
We further applied POLARIS on a more complex tissue: breast

cancer samples. There are several subtypes of breast cancer, among
which the HER2+ subtype is characterized by the increased expres-
sion of ERBB2 (also known as HER2) in tumor cells (38). We ob-
tained ST data of HER2+ tumors from eight individuals (patients A
to H) generated through the Spatial Transcriptomics platform (3,
38). Each of the eight patients provided multiple slides, but only
one slide from each patient was pathologist annotated. Annotations
mark areas with one of the following six labels: in situ cancer [non-
invasive ductal carcinoma in situ (DCIS)], invasive breast cancer
(IBC), adipose tissue, immune infiltrate, breast glands, or connec-
tive tissue (undetermined spots were not used in the analysis) (38).
Here, we highlight the results of two slides with both IBC and DCIS
regions (results from the A1 slide in Fig. 3, F to K, and fig. S5 and
results from the G2 slide in figs. S4 and S5). We applied POLARIS
on the pathologist-annotated ST data using an external scRNA-seq
reference (39). POLARIS made reasonable inference regarding cell
composition on slide A1 (Fig. 3F). For example, cancer epithelial
cells are inferred to be enriched in the DCIS and IBC areas.
POLARIS also identified several LDE genes in the DCIS area
(Fig. 3, I and J). These LDE genes, including S100A14, MUC1,
PITX1, and ERBB2, are mainly expressed in cancer epithelial cells
(fig. S6). In general, genes that are primarily expressed in cancer ep-
ithelial cells are enriched in either the DCIS or the IBC region
(Fig. 3, H to K), which is expected because these two regions have
similarly high proportions of cancer epithelial cells. The LDE genes
identified by POLARIS successfully capture cancer epithelial cell–
specific genes which differentially expressed in the two regions
(Fig. 3, H to K). For example, in the DCIS region, all POLARIS-
identified LDE genes except ERBB2 have a positive log2 fold
change estimate (Fig. 3J), consistent with expression patterns

shown in Fig. 3K. The observed down-regulation of ERBB2 in the
DCIS area most likely reflects an up-regulation of ERBB2 elsewhere.
As shown in Fig. 3F, most of the slide A1 is the invasive cancer area.
Cancer epithelial cells in the invasive cancer area presumably invade
other areas, resulting in an increased ERBB2 expression in all other
pathologist-identified areas except the DCIS, and these invaded
areas also exhibit an increase in the proportion of cancer epithelial
cells (Fig. 3, H and I, and fig. S4F). ERBB2, the protein encoded by
ERBB2, plays an important role in breast cancer. The overexpression
of ERBB2 disrupts normal cell-control mechanisms, gives rise to ag-
gressive tumor cells, and leads to increased breast cancer metastasis
(40–45). When applied to slide G2, ERBB2 is shown to be up-reg-
ulated in the DCIS area (fig. S4, E and G). Together, these observa-
tions reflect the heterogeneity of the samples and are consistent with
the literature that ERBB2 is overexpressed in 30 to 35% of DCIS,
while ERBB2 is only expressed in 15 to 25% of IBC (46–49).
POLARIS reveals this heterogeneity and complexity by showing dif-
ferential gene expression profiles between DCIS and IBC regions on
the same slide and by revealing differential patterns across slides
from the same patient as well as across patients. In addition to
ERBB2, other LDE genes identified by POLARIS and the proteins
encoded by those genes also play important roles in breast cancer.
For example, copy number amplification of S100A14, significantly
correlated with the increased S100A14mRNA expression, is present
in 5.4 to 20.7% of primary breast cancer patients and in approxi-
mately 26.1% of metastatic breast cancer patients (50). For
another example, CXXC5 overexpression has been observed to be
associated with a poor prognosis for estrogen receptor–positive
(ER+) breast cancer (51).

Polaris enables prediction purely from histology image
After demonstrating that even a single-color histology image is able
to generate high-accuracy deconvolution inference in the develop-
ing human heart tissue, we continued to apply POLARIS to other
spot-level ST data with H&E-stained images. We used the mouse
primary somatosensory cortex area (SSp) data generated from the
10x Visium platform (52). Similar to the mouse VISp region,
mouse SSp is also an area in the mouse cortex with well-defined an-
atomical and functional structure. Specifically, the glutamatergic
neuron types exhibit clear layered patterns (6, 33, 53). Using an in-
dependent scRNA-seq from similar SSp regions (33) as the external
reference, POLARIS trained an image network using four SSp ST
slides. Each slide was clustered into six groups using BayesSpace
(fig. S7). POLARIS successfully captures expected patterns of gluta-
matergic composition and reveals layer structure consistent with
data from the Allen Brain Atlas (34).
Spot-level ST technologies cannot measure every part of a tissue

slide. As shown in Fig. 4A, gene expression levels are not available
for any region outside the measured spots (Fig. 4A). POLARIS,
through its trained image network, can determine cell type compo-
sition using the image of unmeasured areas. Specifically, POLARIS-
trained image network can be applied to cropped images of the
same size as the original grid in training. Sliding across the entire
histological image of the SSp slide and applying the POLARIS-
trained image network to the image of each sliding window, one
can obtain super-resolution inference, encompassing areas not ini-
tially covered by spatial spots. This super-resolution inference em-
powers us to gain finer details of the layered structure (Fig. 4B).
Following the training of POLARIS’s image network, we applied
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it to a new SSp slide to test whether the trained image network is
able to make reasonable inference on images from independent
slides (Fig. 4C). We compared cell compositions inferred using
the image network trained by POLARIS from other slides, with
those inferred using the new slide’s own gene expression and histol-
ogy image on measured spots (Fig. 4, D and E, and fig. S8, A and B).

Although the two sets of inference show differences, results ob-
tained solely from POLARIS’s pretrained image network still
show strong correlation with the inference results using its own
image and gene expression, especially in glutamatergic neurons
(e.g., the Pearson’s correlation for L6b CTX is 0.8). POLARIS-
trained image network successfully recovers the layered structure

Fig. 4. POLARIS achieves super-resolution cell composition inferencewhen using histology image as input.Onmouse SSp 10x Visium slide ST8059048: (A) Original
grid and POLARIS-inferred cell composition. (B) Super-resolution cell composition inferred using a POLARIS-trained image network. Points in (A) and (B) are colored by the
corresponding cell proportion (from blue to yellow corresponds to low to high). On slide ST8059052: (C) Original grid of the slide. (D) POLARIS-inferred cell composition
inference using spot-level gene expression and histology image. (E) Inferred cell composition using a POLARIS-trained image network (trained on the other four slides),
based on histology image only. Similarly, points in (D) and (E) are colored by the corresponding cell proportion (from blue to yellow corresponds to low to high). On
HER2+ breast cancer: (F) Pathologist’s annotation of slide H1. (G) Super-resolution inference of H1 using POLARIS image network trained on H1. (H) Histology image of
slide H3. (I) Super-resolution inference of H3 using POLARIS image network, again trained on H1. The points in (G) and (I) are colored by the cancer epithelial cell pro-
portion. CTX, isocortex; IT, intratelencephalic; PT, pyramidal tract; NP, near-projecting.
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in most cell types, suggesting that the approach could be applied to
new histology slides as long as we have a network pretrained by
POLARIS using ST data from similar regions.
POLARIS-trained image network was further examined using

breast cancer data. We again used pathologist-annotated ST data
and the external scRNA-seq from Wu and colleagues as reference
to perform deconvolution on slide H1 (Fig. 4F) (38, 39). Afterward,
we used the image network trained by POLARIS from slide H1 to
enhance resolution and obtain super-resolution cell composition
inference on the H1 slide itself (Fig. 4G). The inferred cell compo-
sitions are consistent with those in other slides where cancer epithe-
lial cells are enriched in the DCIS and IBC regions. It appears that
cancer epithelial cell proportion is able to accurately capture the
cancerous areas. For example, spots with >0.4 proportion of
cancer epithelial cells are enriched within regions labeled as DCIS
and IBC by pathologists (fig. S8E). We then further applied the
POLARIS image network trained on H1 to two other slides of the
same patients (H2 and H3), which have no pathologist’s annotation
(Fig. 4, H and I, and fig. S8, C to G). By closely examining the his-
tology images, it is evident that regions characterized by high pro-
portions of cancer epithelial cells are primarily cancerous areas. Our
results therefore suggest that POLARIS enables a new method of
registering histology images to different anatomical/functional
regions, e.g., cancerous areas in this analysis. By examining cell
composition in each spot, we are able to group the spots into
layers. In summary, with a trained POLARIS image network, we
could obtain super-resolution cell composition inference, which
reveals finer layer structure of a tissue.
POLARIS allows cell composition inference on new histology

images without gene expression and, consequently, is able to iden-
tify anatomical and functional regions. Compared to existing super-
vised classification methods for registering histology image tiles to
different regions or layers, which require annotated layer informa-
tion, POLARIS is unsupervised in terms of histology information
and does not require pathologist annotation. Instead, POLARIS
relies on preknowledge about the relationship between the targeted
layer and the cell composition.

DISCUSSION
ST technologies are rapidly evolving. In the near future, we expect to
be able to measure gene expression levels at single-cell resolution
and of all genes in the transcriptome. Now, spot-level resolution
ST technologies such as the Visium and Spatial Transcriptomes
still have their advantages in terms of throughput (in terms of
both number of genes measured and number of spatial spots exam-
ined) and the ability to obtain high-resolution H&E-stained images.
Because of their advantages, researchers are generating a deluge of
these data. It is, however, imperative to perform cell type deconvo-
lution at each spot to mitigate or eliminate potential confounding
caused by differential cell composition across spots. Despite numer-
ous methods developed for ST deconvolution, two pieces of infor-
mation have been underused. First, often there is a layer structure or
at least areas reflecting different anatomical or functional regions in
an ST slide. Second, histological images, carrying information com-
plementary to spot-level gene expression profiles, have not been
fully explored in their value for cell type decomposition. In this
work, we present POLARIS, a unified framework that leverages
layer structure information and/or histological images, for cell

type deconvolution both at spots with expression measurement
and in regions with only image information, as well as for the rev-
elation of LDE genes.
We demonstrate the performance of POLARIS on simulation

and real datasets including developing human heart, mouse
cortex VISp and SSp region, and human HER2+ breast cancer
samples. POLARIS robustly achieves best or close to best deconvo-
lution performance compared to other state-of-the-art methods.
POLARIS’s inference on spot-level ST data reveals layered struc-
tures that are consistent with gene expression profiles, histological
images, and known/established anatomical/functional layers/
regions in the corresponding tissue samples.
Equally if not more importantly, POLARIS accurately infers

layer-specific expression profiles across different cell types, which
leads to the identification of LDE genes. We demonstrate POLAR-
IS’s power to identify LDE genes using simulation data as well as the
single-cell resolution ST data from the developing human heart,
where we have knowledge regarding the true LDE genes. The
LDE genes identified by POLARIS in developing human heart
data exhibit different gene expression profiles across layers,
beyond what can be attributed to differential cell type compositions.
Last, applying POLARIS to ST data from breast cancer patients, we
found that POLARIS-identified LDE genes reveal complex hetero-
geneous across-layer/region differential expression across samples
and/or patients. The detected LDE genes are consistent with estab-
lished knowledge regarding breast cancer pathology, including me-
tastasis and prognosis, but offer more granular sample-level and
patient-level information that can potentially empower personal-
ized diagnosis and treatment. POLARIS assumes that the layer-spe-
cific shift parameter is shared across cell types. This assumption is
based on observations in single-cell resolution ST data (e.g., heart
ISS data; Fig. 3E). In addition, because of the model identification
problem, we chose to go with a parsimonious model and therefore
did not implement a layer shift specific to each cell type. Consider-
ing that we are inferring both the cell type proportion and the layer-
specific shift at the same time, modeling a layer shift specific to each
cell type will very likely cause the model to confuse the proportion
and shift, which will result in poor and unstable estimation of both
parameters. We consider this as a limitation of our model, which
will likely to be resolved in future efforts.
Another key feature of POLARIS is its ability to leverage image

data. In the ST deconvolution field, gene expression itself has
proved its ability to infer cell composition. Imaging information,
however, has been underused. Recent work (18, 19) showed the po-
tential of histology images accompanying ST data. We believe that
histology images can be further leveraged for ST inference. For
example, histology images alone are widely used to segment cells
with deep learning models (13, 14). POLARIS can take an accom-
panying image as input to train an image network and use a pre-
trained image network on a completely new image. Our
pretrained POLARIS image network offers a novel method for
tissue registration, which extracts and reveals tissue anatomical or
functional structures either from the histological image alone or
jointly with gene expression. The major barriers that prevent the
full potential of integrating histological images with ST data
include quality of the co-registered image and, most importantly,
the absence of pathologist annotations. To accomplish the task
with the currently available data, POLARIS incorporates training
of the image network into the inference of cell composition.
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Instead of training a model with inferred cell composition as the
goal and using MSE as the loss function, our intention is to use his-
tology images to help with the estimation of cell composition under
the rationale that spots with similar histological images and similar
neighborhoods tend to share similar cell composition. Nevertheless,
we fail to demonstrate that the image improves deconvolution per-
formance due to the limitation of the current data: Single cell–level
resolution ST data only provide DAPI-stained images, which only
comprise one color panel, while spot-level ST data have no gold
standard truth. Despite these limitations to quantify the perfor-
mance, POLARIS with image input still achieved high accuracy
among the state-of-the-art methods in single-cell resolution ST
data, and in spot-level ST data, cell type composition inferred by
POLARIS agreed with single-cell level data and the expected biolog-
ical layers (e.g., glutamatergic neurons in the mouse cortex and
cancer epithelial cells in the breast cancer slides). POLARIS intro-
duces a novel approach for inferring cell composition purely from
histological images that has not previously been explored by ST de-
convolution. We believe that the versatile ability of POLARIS to in-
corporate histological images to elucidate layer-specific gene
expression patterns will empower discoveries in spatial biology.

MATERIALS AND METHODS
POLARIS inference algorithm
We use g for gene index, c for cell index, z for cell type index, and L
for layer index. Zc is the cell type of cell c, Lc is the layer of cell c, and
Ls is the layer of spot s. We assume that in scRNA-seq reference
dataset,Xcg, expression count of gene g in cell c follows the following
negative binomial distribution

Xcg ≏ NB½Sc Softplusðθgzc þ TLcgÞ; Pg �

Softplus(x) = log[1 + exp(x)] is used to guarantee that
Rgzc = Softplus(θgzc+TLcg) > 0. Pg = Sigmoid(og), where
SigmoidðxÞ ¼ 1

1þexpð� xÞ is the sigmoid function. Sc is the library
size of cell c, and Zc is the cell type of cell c. NB is the negative bi-
nomial distribution. θgzc is the mean location parameter shared
across layers. To capture the gene expression variation between
layers, we introduce a new parameter TLg, a mean shift parameter
for layer L and gene g. We assume that for a gene, all cell types
share the same shift parameter across layers. We further assume
that TLg ∼ N(0,1). However, in real world, we do not have the
layer information in the scRNA-seq reference data. We make the
following assumption

Xcg ≏ NB½Sc SoftplusðθgzcÞ; Pg �

when inferring the parameters in the reference data. Estimates for
the parameters are then obtained by finding the maximum likeli-
hood estimate, given the provided scRNA-seq reference data via
the gradient-based optimization using the PyTorch library
in Python.
In the ST data, we make similar distributional assumption. Spe-

cifically, we assume that Xscg, expression count of gene g in cell c in
spot s, follows the following negative binomial distribution

Xscg ≏ NB½βgSoftplusðθgzc þ TLcgÞ; Pg �

βg is the parameter measuring technical bias between ST and
scRNA-seq reference for gene g. Note that the bias parameter is

gene specific. Considering the additive property of negative binomi-
al distribution and summing across all single cells within spot s, the
resulting distribution of gene g in spot t also follows a negative bi-
nomial distribution

Xsg ≏ NB
XZ

z¼1
βgSoftplusðθgz þ TLsgÞnsz;Pg

" #

Z is the total number of cell types, and nsz is the number of cells
of type z in spot s. All the parameters are inferred using MAP esti-
mation, with θ̂g ; P̂g obtained from scRNA-seq reference. When
image data are used in the model, we incorporate a POLARIS
image network to infer the cell type composition. POLARIS
image network takes MAE-extracted features as input, and the
output is the cell composition. The image network is trained
using MAP, which means that the loss function is the negative pos-
terior likelihood. Last, cell type proportion can be calculated
as vsz ¼ nszP

nsz
.

Image feature extraction using MAE
The MAE codes are obtained from https://github.com/
facebookresearch/mae (version 11 January 2022). We only use the
pretrained encoder part to extract the image features (32). We used
mae_visualize_vit_large_ganloss.pth as the pretrained model. We
used MAE to extract image features for the spot image and spot
neighborhood image. The spot image is a r*r square covering the
spot. r is defined specific to the dataset used (details about the
used r could be found in the source code). The neighborhood
image is defined as a 3r*3r square sharing the same center point
as the spot image. The two MAE-extracted 1024 length vectors
are combined as the image input of the spot. The POLARIS
image network combines two levels of fully connected layers
(2048 to 512, 512 to the number of cell types). θgz and TLsg are
fixed during the training of image network.

Simulation
We begin by generating a single-cell reference. A total of 100 genes
are simulated in six cell types. The number of cells in each cell type is
simulated fromN(500,1002) and rounded to the nearest integer. For
each cell, we simulate the layer from Binomial(0.3), where we treat a
simulated value of 0 as layer 1 and value of 1 as layer 2. We then
simulate the gene expression of gene g in cell c from
NB[Softplus(θgzc + TLcg), Pg], where NB denotes the negative bino-
mial distribution. Zc represents the cell type of cell c, and Lc repre-
sents the layer of cell c. In the first simulation, both θgzc and TLg are
simulated from N(0,1) and Pg is simulated from Uniform(0.2,0.8).
In the sparse simulation, θgzc are simulated fromN(− 2,1).Note that
TLg represents the layer-specific gene expression profile, thus allow-
ing expression profiles to vary across layers, even for the same gene g
and cell type. We then construct pseudo-spots by randomly select-
ing cells in layer 1 and layer 2 with replacement from single cells
simulated above. In each spot, the number of cells is determined
by sampling a random number from Uniform (10,16). We simulat-
ed 50 spots in layer 1 and 150 spots in layer 2. For simulation with
different proportion of genes with layer-specific expression profiles,
we define the proportion as m. Then, TLg for 100*(1 − m)% genes
are set as 0, while TLg for the rest 100*m% genes are simulated
from N(0,1).
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Calculate between-layer fold change
To identify LDE genes, we compare the gene expression profile
across layers by comparing layer-specific location parameters

Softplusðθgz þ TLgÞ

Specifically, the fold change of gene g in layer L compared to
other layers in cell type z is calculated as

FLg ¼ Softplusðθgz þ TLgÞ=
X

L0=L
Softplusðθgz þ TL0gÞ=ðS � 1Þ

h i

where S is the total number of layers. Then, we take the maximum
fold change across cell types to quantify the across-layer fold change
of gene g.

LDE gene identification
We perform permutation test to identify LDE genes. With a given
layer annotation Layerobs, we perform cell type deconvolution and
infer TobsLg and F

obs
Lg . Then, we randomize the layer annotation for N

times and generate pseudo-layer annotation Layersim1,…, LayersimN.
Consequently, we are able to infer Tsim1Lg ; . . .;TsimNLg . Then, the P
value of gene g in layer L is defined as

P value ¼
# jTsimLg j.jT

obs
Lg j

N
Genes with P value , 0:05

Total number of genes (Bonferroni correction)
and j log2F

obs
Lg j. 1 are considered as the LDE genes in layer L

(marked as pink in the figures). We used N = 10,000 (permutation
times) in all the analysis. For the LDE analysis in the article, we only
used gene expression (i.e., histological images not used) in the de-
convolution process in the permutation test.

Data preprocessing
For the STARmap data, we only keep genes that are present in at
least 2% of spots.
In the breast cancer analysis, we only keep HER2+ subtype ST

data for deconvolution evaluation. Similarly, we keep only the
HER2+ patients’ scRNA-seq data as reference. For scRNA-seq ref-
erence, genes expressed in at least three cells and cells expressing at
least 200 genes are kept. Similarly for ST data, genes expressed in at
least three spots and spots expressing at least 100 genes are kept.
Only genes that exist in both scRNA-seq and ST data are used in
further analysis. Top 2000 highly variable genes (HVGs) are used.
The gene subsettings are accomplished using the R package Seurat
(54). HVGs are selected using feature variance calculated by the
FindVariableFeatures function with default settings. To reduce
the effect of excessive zeros, we recommend removing genes with
an expression level of less than 2%. For the heart ISS DAPI-
stained image, we reverse the color and enhance the contrast
using ImageEnhance function in the Pillow package (55).

Comparing to other state-of-the-art methods
We compared the performance of POLARIS with several state-of-
the-art deconvolution methods developed for ST data. We included
RCTD and stereoscopes because of their top performance in the
probabilistic-based model. Our inclusion of DestVI was based on
the fact that it claimed to identify a continuous state that goes
beyond discrete cell types, which we consider to be similar to our

objective. CARD was included because it is capable of inferring
the cell type composition in areas that are not directly measured.
Because SPOTlight is the top performer among the NMF+NNLS
techniques, we also included it in our analysis.
We followed the instructions of each method on their corre-

sponding website. Among all the methods, only RCTD has a
built-in gene filtering method, where only genes with normalized
gene expression ≥ 0.0002 are included, and it selects cell type
marker genes based on a log fold change threshold of 0.75 (28).
We used the default parameters of RCTD and ran RCTD in full
mode. Only selected cell type marker genes were fed into RCTD.
For all other methods, we used all genes without any further filter-
ing from the preprocessed data described in the previous section.

Tissue detection
To use POLARIS-trained image network, we need to automatically
detect the tissue section from a histological image. We used the fil-
ter_entropy function in https://github.com/CODAIT/deep-
histopath (version 7 March 2019). We used entropy, which mea-
sures tissue complexity, to detect the percentage of tissue in each
spot. Areas such as the slide background are less complex than
the tissue area. We used the default threshold of 5 in the analysis.
Pixels with an entropy value greater than 5 are counted as tissue
regions. Spots with greater than 5% tissue area are kept in the
super-resolution composition inference.

Supplementary Materials
This PDF file includes:
Figs. S1 to S8

View/request a protocol for this paper from Bio-protocol.
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