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Abstract

Spatial transcriptomics (ST) technologies allow researchers to examine transcriptional profiles along with maintained positional
information. Such spatially resolved transcriptional characterization of intact tissue samples provides an integrated view of gene
expression in its natural spatial and functional context. However, high-throughput sequencing-based ST technologies cannot yet
reach single cell resolution. Thus, similar to bulk RNA-seq data, gene expression data at ST spot-level reflect transcriptional profiles
of multiple cells and entail the inference of cell-type composition within each ST spot for valid and powerful subsequent analyses.
Realizing the critical importance of cell-type decomposition, multiple groups have developed ST deconvolution methods. The aim of
this work is to review state-of-the-art methods for ST deconvolution, comparing their strengths and weaknesses. In particular, we
construct ST spots from single-cell level ST data to assess the performance of 10 methods, with either ideal reference or non-ideal
reference. Furthermore, we examine the performance of these methods on spot- and bead-level ST data by comparing estimated
cell-type proportions to carefully matched single-cell ST data. In comparing the performance on various tissues and technological

platforms, we concluded that RCTD and stereoscope achieve more robust and accurate inferences.

Keywords: spatial transcriptomics, single-cell, cell-type deconvolution, deep learning, probabilistic modeling

Introduction

Interrogation of patterns of messenger RNAs (mRNAs)
with their spatial context maintained in intact tissue sec-
tions enables simultaneous profiling of tissue anatomy
and function. Recently burgeoning spatial transcrip-
tomics (ST) technologies empower such interrogation
and thus open new ways of biomedical research, holding
the promise to reveal novel biological insights that can
have direct clinical relevance in terms of diagnosis and
treatments [1, 2]. These rapidly advancing ST technolo-
gles provide us with quantification of mRNA expression
for a large number of genes, while maintaining their
spatial context in the original tissue sample [3-6]. ST
technologies can be classified largely into two categories,
namely imaging- and sequencing-based methods [7].
Imaging-based techniques, including single-molecule
fluorescence in situ hybridization (smFISH) [8], multi-
plexed error robust fluorescence in situ hybridization
(MERFISH) [3] and non-barcoded and unamplified cyclic-

ouroboros smFISH method (osmFISH) [9], provide both
quantitative measurements of RNA expression levels
and information about RNA spatial localization by
directly imaging individual RNA molecules in single cells.
Sequencing-based techniques, such as spatial barcoding
employed by the commercially available 10x Genomics
Visium platform and Spatial Transcriptomics platform,
are powered by placing histological sections on barcoded
reverse transcription primers with unique positional
barcodes followed by sequencing and computational
reconstruction to capture gene expression in tissue
samples [6]. We note that in our manuscript, spatial
transcriptomics or ST refers to the general spatial
transcriptomics field and Spatial Transcriptomics refers
to the particular technology platform originally proposed
by Stahl et al. [6].

The emergence and rapid advancements of ST
technologies offer an unprecedented way to explore
transcriptional profiles in the spatially resolved context,
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enabling studies of myriads of aspects that were not
possible without ST technologies, including identifica-
tion of genes whose expressions exhibit spatial patterns,
revelation of cellular subpopulations in their native spa-
tial context, exploration of biologically relevant spatial
domains, and interrogation of cell-cell communications.
These spatially resolved gene expression patterns inform
the corresponding tissue and organ system, capturing
deeply intertwined organ structure and function. In
contrast, single-cell RNA sequencing (scRNA-seq) tech-
nologies often require isolation of single cells by either
fluorescence-activated cell sorting (FACS) or manual
picking, to study organ structure and function [10, 11].

However, existing ST techniques are limited by the
trade-off between spatial resolution and the number
of genes measured. Imaging-based ST techniques can
attain single cell or even subcellular resolution, but albeit
theoretically possible to quantify up to 10 000 genes,
most can only measure hundreds of genes with high
quality and fidelity, entailing a priori marker gene selec-
tion and rendering them less suitable for exploratory
analyses [3, 12]. Sequencing-based techniques can
measure whole-transcriptome-wise gene expression,
whereas these technologies can only obtain spot-level
data (where each spot is of diameter 2-10 um or 50-
100 pum) that approach, but do not yet achieve, single-
cell resolution [6, 13]. Therefore, downstream analyses
are susceptible to confounding caused by differential
cell-type compositions across spots. For example, for the
identification of spatially variable genes, gene expression
variation across spots could be driven by different
mixtures of cell types and/or varying numbers of cells
as opposed to being truly driven by spatial location. We
therefore need to estimate the cell-type composition of
each spot, for powerful and valid downstream analysis.
Multiple ST deconvolution methods have been recently
developed for this purpose of inferring spot-level cell-
type mixtures. These methods each have their unique
features, making it challenging for investigators to
choose methods that best suit their data. We therefore
need an impartial and comprehensive assessment of
various state-of-the-art ST deconvolution methods. In
the literature [14-23], the performance of each method
has been assessed predominantly by the developers,
using simulated datasets with varied assumptions
presented in different studies. These comparisons are
often incomplete and prone to biases in interpretation. To
the best of our knowledge, no third-party comprehensive
evaluation of the ST deconvolution methods has been
performed using diverse real datasets. In this work, we
aim to fill in this gap.

In this review, we summarize and compare compu-
tational strategies proposed for cell-type deconvolution
of ST data. The review is organized as follows. We first
describe 10 state-of-the-art ST deconvolution methods,
highlighting several key aspects including the statistical
method employed, type(s) of ST data tailored to, and
method-specific unique features. We then present per-
formance of these methods using six real ST datasets as

benchmarks. Finally, we provide practical guidelines and
emphasize the advantages and drawbacks of these meth-
ods in real data applications. We note here that we only
consider methods that focus squarely on cell mixture
deconvolution which output cell-type proportion as a
result. Methods like MIA [24] and Seurat [25] that provide
other spatially deconvolved matrices like cell enrichment
score for a certain area or anchor score are not included
in the evaluation.

Computational methods developed for
cell-type deconvolution of ST data

In recent years, a diverse collection of ST deconvolution
methods has been proposed. Existing deconvolution
methods for ST data can be largely classified into three
groups: probabilistic methods, methods based on non-
negative matrix factorization (NMF) and non-negative
least squares (NNLS), and other methods (Figure 1,
Table 1). The first group, probabilistic methods, includes
Adroit [14], cell2location [15], DestVI [16], RCTD [17],
STdeconvolve [18] and stereoscope [19], where the data
distribution is explicitly or parametrically specified
and inference is carried out using likelihood-based
approaches. The second group, NMF and NNLS based
methods, includes spatialDWLS [20] and SPOTlight [21].
Other methods including DSTG [22] and Tangram [23],
estimate the cell-type proportion using some specifically
designed method architecture or loss function, which
we loosely classify as other methods (Figure 1, Table 1).
Here we review 10 state-of-the-art methods: Adroit,
cell?location, DestVI, RCTD, STdeconvolve, stereoscope,
spatialDWLS, SPOTlight, DSTG and Tangram [14-23]. We
briefly summarize each method below.

Accurate and Robust Method to Infer Transcriptome
Composition (AdRoit) [14] is designed for bulk RNA-seq
data, but it can also be used for ST data. AdRoit first
selects informative genes, models their expression dis-
tributions by assuming gene counts following negative
binomial distributions, and then estimates their corre-
sponding locations and dispersion parameters. Subse-
quently, cross-sample variability, collinearity of expres-
sion profiles and cell-type specificity are estimated from
spot-level ST data. Then, gene-wise scaling factors are
estimated by jointly modeling reference scRNA-seq data
and ST data under inference. These gene-wise scaling
factors in AdRoit enable the method to correct for poten-
tial platform biases between the scRNA-seq reference
and target ST data. Finally, these quantities are included
in a weighted regularized model for inferring cell-type
proportions.

Cell2location [15] adopts a Bayesian hierarchical
framework. It first uses external scRNA-seq data as
reference to estimate cell type-specific signatures.
The observed spatial expression count matrix is then
modeled with a negative binomial distribution with
the mean parameter depending on reference cell-type
signatures, and the overdispersion parameter modeled
using an exponential-Gamma compound prior which
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Figure 1. Summary of ST deconvolution methods. ST deconvolution methods take (target) ST data and an optional scRNA-seq reference data as input (top
panel). Current ST deconvolution methods can be classified into three main categories: probabilistic-based, NMF and NNLS based, and other methods
(center panel). The output of ST deconvolution methods is cell-type proportion for each spot which scales from 0 to 1 (bottom panel). Ref-para: estimated
parameters of the distribution employed from the reference data. Func: the function of parameters and cell-type proportion designed by each method.

aims to make most genes have low overdispersion.
Gene-specific technological sensitivity and gene- and
location-specific additive shifts are included as part of
the mean parameter, each individually modeled using a
separate hierarchical Gamma prior. Cell2location further
models the regression weights of cell-type signatures
using a hierarchical Gamma prior and decomposes the
regression weights into contributions from multiple

latent groups which can be interpreted as spots with
shared cell-type abundance profiles, aiming to borrow
strength across locations with similar cell compositions.
Finally, cell2location employs variational Bayesian
inference to approximate the posterior distribution and
produces parameter estimates accordingly.
Deconvolution of spatial transcriptomics profiles
using variational inference (DestVI) [16] is a probabilis-
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Table 1. ST deconvolution methods overview

Method Designed for Feature selection Inference method Language URLs Reference Published Time
ST data? (bioRxiv first
version)

stereoscope Yes Top 5000 highest Probabilistic, negative  Python https://github. [19] 10.09.2020
expressed genes binomial distribution com/almaan/ (12.13.2019)
(optional) Stereoscope

RCTD Yes DE genes Probabilistic, Poisson R https://github. [17] 02.18.2021

distribution, com/dmcable/ (05.08.2020)
maximum likelihood spacexr

SPOTlight Yes Highly variable Non-negative matrix R https://github. [21] 02.05.2021
genes factorization (NMF) com/MarcElosua/ (06.04.2020)

along with SPOTlight_
non-negative least deconvolution_
squares (NNLS) analysis

Tangram Yes Union of cell type  Optimization of Python https://github. [23] 10.28.2021
marker genes self-constructed loss com/ (08.30.2020)

function broadinstitute/
Tangram

DSTG Yes 2000 most Semi-supervised Python https://github. [22] 01.22.2021

variable genes graph convolutional com/Su- (10.21.2020)
network, adaptive informatics-lab/
moment estimation DSTG
algorithm

cell2location  Yes No selection Probabilistic, negative  Python https://cell2 [15] 01.13.2022

binomial distribution, location. (11.17.2020)
variational Bayesian readthedocs.io/
inference en/latest/

AdRoit No Genes enriched in ~ Probabilistic, R https://github. [14] 10.22.2021
one or more cell non-negative least com/TaoYang- (01.04.2021)
types or highly squares regression dev/AdRoit
variable genes

spatialDWLS  Yes Cell type marker Dampened weighted R https:// [20] 05.10.2021
genes least squares (DWLS) giottosuite.com/ (02.03.2021)

DestVI Yes Highly variable Probabilistic, latent Python https://docs.scvi-  [16] 04.21.2022
genes variable models, tools.org/en/ (05.11.2021)

auto-encoding stable/user_guide/
variational bayes models/destvi.
html
STdecon- Yes Highly variable Generative R https://jef.works/  [18] 04.29.2022
volve genes probabilistic model: STdeconvolve/ (06.16.2021)

latent

Dirichlet allocation
(LDA), variational
expectation—
maximization
algorithm

tic method for multi-resolution analysis of ST data.
DestVI explicitly models variation within cell types
via continuous latent variables instead of limiting the
analysis to a discrete view of cell types. Such continuous
within-cell-type variations as well as the correspond-
ing cell type-specific profiles are learned through a
conditional deep generative model, specifically, using
variational inference with decoder neural networks. In
this scheme, two different latent variable models (LVMs)
are constructed for reference scRNA-seq (scLVM) and
target ST data (stLVM), respectively. DestVI similarly
assumes that the number of observed transcripts follows
a negative binomial distribution. The decoder neural
network trained by scLVM is employed by stLVM, and
cell-type proportion is obtained using maximum-a-

posteriori (MAP) inference scheme where the number of
observed transcripts in each spot is assumed to follow
a weighted sum of the inferred single-cell negative
binomial distributions.

Robust cell-type decomposition (RCTD) [17] is initially
designed for Slide-seq data, but it could also be used
on other ST data. It assumes that the observed spot-
level gene counts follow a Poisson-log-normal mixture.
The mean of the log-normal distribution for the library-
size-normalized Poisson rate parameter is modeled
with cell type-specific mean expression profiles, while
accounting for platform effects by including a gene-
specific random effect term. RCTD first uses external
scRNA-seq reference data to estimate the mean gene
expression profile of each cell type. Gene filtering is
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then performed by selecting differentially expressed (DE)
genes across cell types, and the variance of gene-specific
platform effects is estimated. The inferred platform
effects are plugged into the probabilistic model to obtain
the maximum likelihood estimates (MLE) of cell-type
proportions.

STdeconvolve [18] is areference-free and unsupervised
cell-type deconvolution method for ST data. The key dif-
ference between STdeconvolve and other methods is that
STdeconvolve can perform cell-type deconvolution with-
out using external scRNA-seq references. The method is
built upon latent Dirichlet allocation (LDA), which has
been applied in deconvolution for bulk RNA-seq data [26],
to identify putative transcriptional profiles for each cell
type and their proportions in each ST spot. STdeconvolve
adopts the standard LDA framework [27] in the context
of ST data where each spot is defined as a mixture
of a predetermined number of cell types modeled by
a multinomial distribution while cell-type distribution
is drawn from a uniform Dirichlet distribution. STde-
convolve assumes the existence of highly co-expressed
genes for each cell type and selects significantly over-
dispersed genes to inform latent clusters. It also selects
informative genes and provides data-driven measures to
select the number of distinct clusters if not pre-specified.
Although not necessary, annotation of the inferred clus-
ters could be performed with an external scRNA-seq
reference using transcriptional correlation analysis or
gene set enrichment analysis.

Stereoscope [19] performs deconvolution by spatially
mapping cell types using annotated scRNA-seq reference
and target ST data. Stereoscope also relies on the com-
monly adopted assumption that gene counts from both
spatial and single-cell data follow a negative binomial
distribution. The method incorporates a gene-specific
coefficient that is shared across all ST spots in order to
correct for potential platform biases between scRNA-seq
reference and target ST data. Additionally, stereoscope
includes a noise term as a ‘dummy’ cell type to account
for data asymmetry when cell types in the reference do
not match perfectly with those in the target ST data.
Finally, stereoscope employs MLE to estimate cell type-
specific parameters from scRNA-seq reference data and
uses MAP to infer cell-type mixture in the ST data.

SpatialDWLS [20] is an enrichment-based, weighted
least squares method that uses dampened weighted
least squares (DWLS) [28] to deconvolve ST data,
where weights minimizing the overall relative error
rate are selected. First, Parametric Analysis of gene set
Enrichment analysis (PAGE) [29, 30] identifies likely cell
types present in each ST spot by calculating the fold
change of cell type-specific marker genes for each spot.
Then, DWLS is applied to infer the proportions of cell
types in each spot based on enrichment results. Rare cell
types are removed after initial proportion estimation,
followed by a second round of deconvolution, which
produces the final estimates.

SPOTlight [21] is a deconvolution algorithm that
employs the non-negative matrix factorization (NMF)
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regression algorithm as well as the non-negative least
squares (NNLS). In SPOTlight, NMF is carried out to
identify cell type-specific topic profiles in scRNA-seq
references and NNLS is carried out to identify spot
topic profiles, which generates the deconvolution result.
Besides cell-type deconvolution estimates, SPOTlight
also quantifies the quality of the predicted composition
by calculating the total sum of squares and the residual
sum of squares.

DSTG [22] is a similarity-based semi-supervised graph
convolutional network (GCN) model that can recover
cell-type proportions in each ST spot. By leveraging
scRNA-seq data, DSTG first constructs synthetic ST
data called ‘pseudo-ST’ by randomly pooling two to
eight cells each time from scRNA-seq data to form
pseudo-ST spots. Then, to capture the similarity between
spots (incorporating both pseudo and real ST data),
DSTG learns a link graph by finding mutual nearest
neighbors in the shared space identified by canonical
correlation analysis (CCA). Based on the link graph, a
semi-supervised GCN is then trained with both pseudo
and real ST data, which can be used to predict cell-type
proportions in the real ST data.

Tangram [23] utilizes a machine-learning-based
framework and adopts specifically designed loss func-
tions to learn a mapping that aligns scRNA-seq reference
data to spatial spots, and can thereby carry out cell-type
deconvolution. Tangram randomly arranges single cells
to spatial locations and computes an objective function
measuring the spatial correlation between real ST data
and single-cell aggregated ‘pseudo-spatial’ data, both
at gene level and at spot level. Then Tangram tries to
maximize this objective function by rearranging the
single cells in space to match real ST data and potentially
selecting the optimal subset of single cell observations.
The final output is a matrix denoting the probability
of finding each cell in each ST spot. Tangram can also
optionally utilize the histological or fluorescence image
to carry out cell segmentation and use the estimated
number of cells per spot as additional regularization in
the model.

In summary, many innovative ST deconvolution tools
have been developed and tailored specifically for ST data.
These methods, largely in the developers’ hands, have
demonstrated their potential in both simulated and real
datasets. However, there does not exist an impartial and
comprehensive comparison of these methods. Here, we
use multiple real ST datasets, encompassing both single-
cell level and spot-level ST data, each with pathologist
annotations (Table 2), to systematically and objectively
evaluate the performance of these methods.

Benchmarking ST deconvolution methods
performance

We employed three tissues to evaluate the performance
of the aforementioned 10 methods [14-23] (Table 2). We
used a combination of single-cell resolution and spot-
level ST datasets to compare the methods in various
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Table 2. Data source and reference

Data Type Tissue Reference Link

seqFISH+ Single-cell resolution ST Mouse olfactory bulb [5] https://github.com/CaiGroup/SeqFISH-PLUS

10x scRNA-seq Mouse olfactory bulb [32] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi’acc
=GSE121891

1SS Single-cell resolution ST Human heart [31] https://github.com/Moldia/heart

10x scRNA-seq Human heart [31] European Genome-phenome Archive accession
number: EGAS00001003996

Spatial Transcriptomics Spot-level ST Human heart [31] https://www.spatialresearch.org

SMART-seq scRNA-seq Mouse brain [11] https://portal.brain-map.org/atlases-and-data/
rnaseg/mouse-whole- cortex-and-hippocampus-
smart-seq (Here we used the data released in
October 2019)

10x Spot-level ST Mouse brain [15] https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-11114/

Slide-seqV2 Bead-level ST Mouse brain [13] https://singlecell broadinstitute.org/single_cell/

osmFISH Single-cell resolution ST ~ Mouse brain

study/SCP815/sensitive-spatial-genome-wide-
expression-profiling-at-cellular-resolution#study-
summary.

9] http://linnarssonlab.org/osmFISH/.

real-world scenarios. For single-cell resolution [5, 9, 31]
ST datasets, we pooled the cells together according to
their spatial coordinates to construct pseudo-ST spots
that mimic real ST spots (Methods) [18]. In this way,
we have the truth of the cell-type mixture in each
pseudo spot. We assessed deconvolution performance
with either internal reference (i.e. using the single-cell
resolution ST dataset itself as the scRNA-seq reference)
or external reference (other scRNA-seq datasets from
the same tissue). For performance quantification, we
used three metrics: root mean square error (RMSE),
distance correlation across cell types, as well as the
difference from truth for each cell type. Smaller RMSE,
higher distance correlation and smaller difference from
truth all indicate better performance. For spot-level ST
datasets, we examined the inferred cell-type proportion
according to some carefully-matched reference single-
cell resolution ST dataset. We note that evaluating spot-
level inference results is challenging because we do not
have true spot-level cell-type compositions. Lacking gold
standard truth results in uncertainty in performance
quantification because the working truth we used, albeit
carefully matched to the best of our knowledge, may still
differ from the target spot-level ST data under inference.
We reason that for tissues with well-established layered
structure, such as brain cortical regions, we can at least
acceptably evaluate inferred compositions of major cell
types, by treating a carefully matched single-cell level ST
dataset as the working truth.

Evaluation on mouse olfactory bulb (MOB)

We first evaluated the deconvolution methods on ST data
from mouse olfactory bulb (MOB) [3]. We utilized single-
cell level data obtained from the seqFISH+ platform [5].
This seqFISH+ dataset provides measurements of 10 000
genes, which is among the largest number of genes avail-
able in single-cell level ST data. In this dataset, 7 fields of
views (FOV) of the olfactory bulb are available, containing

a total number of 2050 single cells. We cropped each FOV
into 25 spots (Figure 2A) and retained only spots with
non-zero cells for further analysis. For deconvolution
methods that require a scRNA-seq reference, we first
performed deconvolution using the internal reference
(i.e. the seqFISH+ data itself as the reference). Such a
perfectly matching reference eliminates the potential
performance impairment caused by any systematic dif-
ferences between the reference and the target ST data.
Although idealistic and not realistic, this internal ref-
erence evaluation serves as a baseline assessment that
provides an upper limit of methods’ performance. We
then proceeded with more realistic evaluations where
the deconvolution methods were tested against an exter-
nal reference (Methods), which allowed us to evaluate
the methods’ ability to handle potential batch effects
between reference and ST data under inference.

Since the selection of genes is critical to deconvolution
performance, we considered several gene subsets. This
seqFISH+ dataset, containing 10 000 genes, allowed us to
evaluate the impact of choices of genes on deconvolution
performance. We considered the following three types of
gene subsets. First, a ‘default’ gene subset was subsetted
using the built-in gene selection strategy of each decon-
volution method. Note that the ‘default’ gene subsets,
using method-specific default strategies, are therefore
specific to each method (Methods). For methods without
a specific recommendation or built-in gene selection
strategy, we used 2000 highly variable genes (HVGs) as the
default. Second, we evaluated different choices of HVGs.
Specifically, we considered the top 100, 500 and 1000 HVG,
where HVGs were defined using the single-cell reference
(Methods), restricted to the genes also available in the tar-
get ST data. Finally, we constructed gene subsets contain-
ing top cell-type marker genes. Specifically, we pooled top
marker genes for each cell type (Methods) to make the
number of unique genes summing approximately to 100,
500 and 1000 genes in total (Figure 2B and C).
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Figure 2. Evaluation on mouse olfactory bulb (MOB) data. (A) Overview of the cell atlas of seven fields of view in the MOB dataset. (B) RMSE and distance
correlation of cell-type proportion estimates using internal reference from 10 methods using sets of marker genes (Top 12, Top 70, Top 148), HVGs and
method-specific default gene subset (Default). (C) RMSE and distance correlation of cell-type proportion estimates using external reference from 10
methods using sets of marker genes (Top 6, Top 32, Top 73), HVGs and method-specific default gene subset (Default). (D) Computing time (in minutes)
when using 100, 500, 1000 HVGs including both single-cell inference (if present) and ST spot deconvolution. Methods missing in each panel indicate that

they did not produce results using the corresponding reference and ST data.

Using the internal reference, Adroit, cell2location,
RCTD, DSTG and Tangram show low RMSE in their
inferred results (Figure 2B). Both HVG and top marker
gene subsets exhibit consistent reductions in RMSE
as the number of genes increases from 100 to 1000.
DSTG shows consistent results for different numbers

of nearest neighbors tested (k =20, 50 and 100) when
using its default gene subset (Supplementary Figure 1B).
The patterns observed above with the RMSE metric
remain qualitatively similar when assessed with the
distance correlation metric (Figure 2B). In particular,
Tangram, Adroit, cell2location, RCTD and stereoscope
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inferred results display high correlation, regardless
of the gene subset tested. Closer examination of the
results reveals that the major deviations from truth
stem from the estimated proportions of interneuron
and neuroblast (Supplementary Figure 1A). These two
cell types share a very close embedding space in tSNE
(Supplementary Figure 2). These similarities may explain
why some methods struggle to estimate their proportions
accurately. SPOTlight attains relatively high correlation;
however, the cell-type proportion estimates are much
noisier and tend to deviate further from the true absolute
proportions than the other top performers highlighted
above, which also explains why SPOTlight results in
better correlation but worse RMSE than spatialDWLS
(Supplementary Figure 3).

Proceeding to more realistic evaluations, we per-
formed deconvolution using an external scRNA-seq
reference, also from mouse olfactory bulbs (Methods)
[32]. We observed some drastic changes in the relative
performances of the methods (Figure 2C). Since cell
types in the external scRNA-seq reference are different
from those in the ST data, we combined neuronal
cell types and kept only the overlapping cell types
when evaluating the performance. Therefore, the RMSE
values from the internal reference are not directly
comparable to those from the external reference. Among
the best performers when using the internal reference,
four remain among the top: Adroit, cell?location,
RCTD and stereoscope, when using the default gene
subset. DSTG achieves its best performance when
k = 20 (Supplementary Figure 1D). Tangram, the No.
1 best performer when using the internal reference,
however, shows substantially impaired performance
when using this external reference. It appears that
Tangram produces clearly biased estimates for Olfactory
Ensheathing cells (OEC) and neurons, noticeably devi-
ating from the truth (Supplementary Figures 1C and 4).
DestVI exhibits similar issues with either internal or
external reference, where all spots have very similar
cell composition estimates (Supplementary Figures 3
and 4). Taken together patterns observed from internal
and external reference, our results suggest that RCTD,
cell2location and stereoscope are among the most robust
to batch effects between reference scRNA-seq and target
ST data.

Regarding choice of gene subsets, both RMSE and
distance correlation are more drastically influenced by
the number of genes when using external reference
than when using the internal reference. In addition,
when using external reference, most methods perform
better with top cell-type marker genes than with HVG
gene subsets, and most achieve the best performance
with the default gene subset. Accordingly, we used
the default sets of genes for analyses presented in
the rest of the manuscript unless otherwise specified.
For STdeconvolve, the appropriate number of clusters
(representing cell types) can be determined based on
prior knowledge of the ST dataset or determined by

a data-driven metric by fitting models with different
numbers of clusters (detailed in Methods). To evaluate
STdeconvolve, we allowed STdeconvolve to choose its
optimal cluster numbers and we only kept deconvolved
clusters that were successfully mapped onto real cell
types with a transcriptional Pearson correlation >0.5
(Methods). Note that multiple deconvolved clusters could
be mapped to the same ground truth cell type. For
the gene subset analysis, we still let STdeconvolve use
marker genes and HVGs from the internal reference
because it is more appropriate to extract genes from
the ST data itself, which is the internal reference
(rather than the external reference) for the reference-
free STdeconvolve method. For mapping STdeconvolve
inferred clusters to cell types, however, we used external
scRNA-seq references. Therefore for STdeconvolve, we
had the same deconvolution results (obtained without
any reference), for internal and external reference.
Internal and external references made differences only
in the cluster-to-cell-type mapping step. When using the
default gene subset with the external reference, many of
the inferred clusters could not be mapped to actual cell
types (particularly for neurons) and therefore exhibited
unsatisfactory performance (Supplementary Figure 1C).

We further benchmarked runtime using the sets of
100, 500 and 1000 HVGs (Figure 2D), with the internal
reference. Runtime increases linearly with the number
of genes in the dataset for most methods. Tangram,
Adroit and SPOTlight are among the fastest methods
with runtime less than a minute with 1000 genes and
164 spots under inference. The runtimes of cell?location,
stereoscope, DSTG and DestVI are heavily dependent on
the number of training epochs (Methods). It is difficult
to choose the optimal number of training epochs to
prevent underfitting. A conservative solution is to use a
large number of training epochs, which will consequently
increase the runtime.

Evaluation on developing human heart

To further evaluate performance impairment between
internal and external references and to assess the impact
of major cell types missing in the reference, we carried
out analyses using data from the developing human
heart [31]. The dataset we utilized is unique in that it
contains both single-cell level and spot-level ST data,
as well as scRNA-seq data, all derived from biological
samples that are similar. The cell types in the single-cell
ST data and scRNA-seq data are identical. This allows
us to compare RMSE and distance correlation values
between internal and external reference. Furthermore,
since the spot-level ST data is based on similar biological
samples, we can treat the observed cell-type proportions
in the single-cell level ST data as working truth and use
these to evaluate the estimated cell-type proportions.
The single-cell level ST data is at subcellular resolu-
tion, generated by the in situ sequencing (ISS) technology.
The ISS data contains gene expression of only 69 genes
including spatial marker genes and genes important for
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cardiac development identified in the authors’ previous
ST analysis, as well as marker genes for each major
cluster in scRNA-seq data. Due to the limited number
of genes, no further gene filtering was applied beyond
the default data preprocessing procedure (Methods). The
cells in the heart ISS dataset were pooled into pseudo-
spots each of size 454 x 424 square pixels according to
their spatial coordinates (Figure 3A and B).

When using the internal reference (i.e. ISS single cells)
to deconvolve pseudo-spots constructed from ISS data,
Adroit, RCTD, stereoscope, DSTG and Tangram show
superior performance, similar to our observations in
the MOB data, but here with a much smaller num-
ber of genes (Figure 3C, Supplementary Figure 7). The
atrial cardiomyocytes and ventricular cardiomyocytes
are successfully mapped to the atria and ventricular
body, respectively. Furthermore, smooth muscle cells
are also correctly mapped to the outflow tract, and
epicardial cells to the thin outer layer of the heart
(Figure 3A and B, Supplementary Figure 7), all of which
agree with annotations from the Cell Atlas and previous
studies [31, 33, 34]. Cardiomyocytes and ventricular
cardiomyocytes are similarly located within the tSNE
embedding space, as well as exhibiting colocalization
in the ventricular interval and the ventricle, rendering
it challenging to distinguish between the two cell
types (Supplementary Figures 2, 6A and 7). While STde-
convolve is able to reflect expected spatial patterns,
including the differences between ventricular intervals
and ventricles, mapping the inferred clusters to their
actual cell-type labels remains a challenge for this
reference-free method. The other methods tend to
generate noisy estimates of cell-type proportions with
this small number of genes (Supplementary Figure 7).

When the external reference is employed, only RCTD
and stereoscope are capable of capturing the expected

spatial distribution of cell types (Supplementary Figure 8).

In contrast to results using the internal-reference, all the
methods except cell2location suffer performance losses
(Figure 3C). Cell2location displays visibly less variation
in cell-type proportion estimates across spots when
using the internal reference (Supplementary Figure 7).
Interestingly, the results are significantly improved when
using the external reference (Supplementary Figure 8).
However, inferred patterns for subepicardial cells deviate
from expectations, which may result from the method’s
inability to distinguish from epicardial cells that are
similar to subepicardial cells (Supplementary Figure 8).
Adroit fails to separate atrial cardiomyocytes and
cardiomyocytes, which results in the large deviation
from truth in both cell types (Supplementary Figure 6B,
cell types (7) and (12)). Since Tangram has the option to
use estimated cell numbers/cell densities as input, we
additionally conducted an ablation study to explore how
the performance changes for Tangram with or without
the cell density information. We performed analysis in
the following five different ways: (1) providing the true
number of cells per spot, (2) not providing the true cell
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density and using a uniform cell density instead, (3) not
providing the true cell density and using a cell density
proportional to the number of RNA molecules instead, (4)
ignoring cell densities altogether and running the default
mapping mode without cell density regularization
(mode = ‘cells’) and (5) ignoring cell densities and running
the cluster mode without cell density regularization
(mode = ‘clusters’). As seen in Supplementary Figure 6E,
there was virtually no difference between results from
the five approaches, with the only difference being that
the ‘cells’ mode (mode (4)) was slightly worse than the
others, potentially because the distribution of cell types
was significantly different between external reference
and the original single-cell data.

We further examined the robustness of the methods
when major cell types in the ST data are missing in the
scRNA-seq reference (Supplementary Figure 6C and D).
We removed (12) cardiomyocytes from both internal and
external reference and examined how the estimated
proportions changed. We can see that with the inter-
nal reference, most methods transfer the proportion
originally attributed to cardiomyocytes to similar cell
types. For example, Adroit, RCTD and stereoscope
results show a major increase in the estimated propor-
tion of ventricular cardiomyocytes. For SPOTlight, the
estimated proportion of cells related to (8) increases
(Supplementary Figure 6C). We observe that methods
generating relatively weak-differentiating patterns (e.g.
cell2location, DestVI, where the estimated proportion
for the major cell in each spot is not significantly higher
than that for other cell types) tend to be more heavily
influenced by the presence of missingness. For these
methods, in the presence of missingness, the proportion
of the missing cell type is separated into multiple cell
types. With the external reference, stereoscope results
still display a major increase in the proportion of
ventricular cardiomyocytes (Supplementary Figure 6D).
Other methods show varying degrees of differences from
the original results when the reference still contains
cardiomyocytes (Supplementary Figure 6C and D). These
differences, however, are largely irrelevant because
cardiomyocyte patterns, not captured in the original
results, cannot and are not rescued by using a reference
missing cardiomyocytes (Supplementary Figure 8). We
further examine the noise term in the stereoscope
estimates which is claimed to represent the cell types
that are present in the ST data but not in the reference.
After removing (12), instead of detecting noise in the
spots with cardiomyocytes, stereoscope estimates a
large proportion of noise in the atrial cardiomyocytes
enriched area (Supplementary Figure 9). This may be
due to the similarity between cardiomyocytes and
ventricular cardiomyocytes and potentially sub-cell
types in the atrial cardiomyocytes. Stereoscope assigns
the proportion belonging to cardiomyocytes to ventric-
ular cardiomyocytes. And the lack of cardiomyocytes
makes stereoscopes over-interpret the part of atrial
cardiomyocytes similar to cardiomyocytes to another
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Figure 3. Evaluation on developing human heart data. (A) Overview of the cell atlas in the developing human heart PCW6.5_1 dataset. (B) Cell-type
proportion in each pooled spot. Each spot is a pie chart. (C) RMSE and distance correlation of heart cell-type proportion estimates using internal and
external reference from nine methods using method-specific default gene subset, on pseudo-spots constructed from single-cell resolution ISS data. (D)
Biological layers inferred by BayesSpace in ISS and Spatial Transcriptomics data along with gene expression of marker genes in each layer. (E) Top four
spot-wise mean cell-type proportion of each layer in ISS and inferred cell-type proportion in the Spatial Transcriptomics data using external reference.
Methods missing in each panel indicate that they did not produce results using the corresponding reference and ST data.

new cell type which becomes the noise term. Since we
do not acknowledge how many cell types are missing in
real life and such noise estimation could be affected
by multiple cell types that share the similar profile,
we recommend carefully interpreting and using noise
estimation.

So far, we have evaluated the methods on pseudo-
spots constructed from spatially resolved single cell
data so that we know the true cell-type proportions.
In reality, we do not know the truth when having spot-
level ST data. As a touchstone of the methods in realistic
spot-level ST data, we performed deconvolution on the

spot-level developing heart ST data using the external
scRNA-seq reference. This spot-level ST dataset is
generated by Spatial Transcriptomics v1.0 where each
spot is 100 um in diameter [6]. Unlike the pseudo-spots
we constructed, these real spots do not have true cell-
type proportions for us to use in evaluations. Lacking
gold standard truth for spot-level data is a challenge
encountered by all evaluations presented in the ST
deconvolution literature. Many publications rely on
visual inspection of expected anatomical patterns or
performance in downstream analysis such as clustering
of spots into their expected spatial layers [19, 23]. Here,
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we adopt an alternative strategy where we evaluate
the estimated cell-type proportions across the tissue
sample using those from a matched single-cell level ST
data as the working truth. Despite differences across
samples, tissue samples dissected from similar regions
are expected to reflect similar biological structure. For
the developing heart data, we divided the tissue into bio-
logical regions shared between spot-level and single-cell
level ST data. Specifically, we observe three layers in the
ISS data where the major cell types are smooth muscle
cells (for layer 1), ventricular cardiomyocytes and car-
diomyocytes (for layer 2) and atrial cardiomyocytes (for
layer 3) (Figure 3D). We infer the layer label of each spot
by performing clustering analysis on the pseudo-spots
constructed from ISS data as well as the real ST spots
separately using BayesSpace [35]. The inferred layers
of the ISS and Spatial Transcriptomics datasets largely
agree with each other, where the marker genes of each
layer show similar gene expression patterns (Figure 3D).
We then compared the estimated proportions of major
cell types in the Spatial Transcriptomics dataset with
the observed proportions of these cell types in the ISS
dataset, which we treated as the working truth. We
observe that most methods make reasonable inference
(Figure 3E, Supplementary Figure 10). In layer 1, most
methods have (5) Smooth muscle/fibroblast-like cells
and (2) Fibroblast-like (AV mesenchyme related) as the
top two cell types. In layer 2, stereoscope, spatialDWLS
and cell2location have the same top two cell types as ISS,
namely ventricular cardiomyocytes and cardiomyocytes.
For almost all the methods, the proportion of ventricular
cardiomyocytes is overestimated, which is consistent
with the overestimation in the deconvolution performed
on the ISS data (Supplementary Figures 7 and 8). In
layer 3, all methods fail to capture the pattern of (9)
epicardial cells. Overall, except for DestVI and Tangram
which fail to capture the major cell types in some
layers, all the methods perform relatively well. Among
them, stereoscope, cell?location and RCTD exhibit higher
agreement with ISS cell composition (Figure 3E).

Evaluation with primary somatosensory cortex

To evaluate how the methods performed on various ST
platforms, we analyzed the primary somatosensory cor-
tex area (SSp), a well-studied and well-structured tissue
area [3, 9, 11, 36]. Similar to the developing heart, we
again used a combination of single-cell and spot-level ST
data, where the single-cell ST data comes from the osm-
FISH platform [9], while spot-level ST data come from
10x Visium Spatial platform [6] and Slide-seqV2 plat-
form [13]. Compared to the Spatial Transcriptomics v1.0,
Visium and Slide-seqV2 have finer resolution: 55 um spot
diameter (with a center-to-center distance of 100 um
between two consecutive spots) and ~10-um mean par-
ticle bead diameter, respectively [6].

We similarly started with deconvolution on pseudo-
spots constructed from single-cell level ST data, again
withinternal and external reference (Figure 4A-C), where
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the internal reference consists of single cells from the
osmFISH single-cell level ST data and the external ref-
erence consists of 5392 single cells from scRNA-seq data
in the same SSp region generated independently by Yao
et al. [11]. The osmFISH data had only 33 genes, which
we chose not to further filter. To harmonize cell-type
labels between osmFISH data and the external reference,
we used STANN [37] to provide cell-type labels for osm-
FISH cells, matching the cell-type labels in the external
scRNA-seq reference. The annotated cell-type map dis-
plays patterns consistent with the adjacent MOp region
chartered by MERFISH data [36] (Figure 4A). When using
the internal reference, Adroit, RCTD, stereoscope, DSTG
and Tangram again prove best performers, achieving low
RMSE (Figure 4B). Most methods are capable of iden-
tifying layer patterns with certain methods struggling
with one or two cell types. For example, DestVI assigns
some proportion of L2/3 IT CTX-1 to L5 NP CTX. Similar
to observations in the developing heart, cell2location
results in a smoother, blended pattern, again possibly
due to the small (here, only 33) number of genes avail-
able (Supplementary Figure 13). All the methods are dra-
matically influenced after changing to the external ref-
erence (Figure 4B and C, Supplementary Figure 14). Tan-
gram and DSTG produce the lowest/best RMSE, while
STdeconvolve and DestVI have the highest RMSE. The
major performance loss when switching from internal
to external reference stems from the under-estimation
of L2/3 IT CTX-1, L4/5 IT CTX, L6b CTX cells and the
over-estimation of Vip cells (Supplementary Figures 12
and 14). STdeconvolve is able to infer twelve clusters,
but these clusters can only map to two reference cell
types, which leads to suboptimal distance correlation
(Supplementary Figure 16). Additionally, we attempted,
as references, data from two adjacent tissues: MOp and
Visp [11] in order to examine how the methods perform
when using references from tissues sections that are not
exactly matched. The majority of the methods maintain
similar performance in comparison with the external SSp
reference (Figure 4C, Supplementary Figure 12), suggest-
ing that three regions are reasonably similar for MOp
or Visp to serve as a sensible external reference for
deconvolving ST data in the SSp region.

We next performed deconvolution on the Visium
and Slide-seqV2 data using the external SSp refer-
ence. We compare the inferred major cell types at
each spot with the osmFISH data (Figure 4D andE,
Supplementary Figure 15). Adroit, cell2location, DestVI,
RCTD, stereoscope and SPOTlight all show patterns of
major cell types consistent with those revealed from
the osmFISH cell atlas when performing deconvolution
on the Visium data (Figure 4D and E). Among them,
Adroit, stereoscope and SPOTlight display a smoother
pattern (Supplementary Figure 15). In contrast to the
performance on the pseudo-spots constructed from the
osmFISH data, Tangram fails to capture the expected
patterns. One possible reason is still the non-negligible
difference between external scRNA-seq reference and
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Figure 4. Evaluation on mouse SSp data. (A) Overview of the cell atlas in the single-cell osmFISH mouse SSp dataset. (B) RMSE of cell-type proportion
estimates using internal and external reference from 9 methods using all genes, on pseudo-spots constructed from single-cell resolution osmFISH data.
(C) Distance correlation of cell-type proportion estimates using internal SSp, external SSp, external Visp, external MOp references. (D) Major cell types
of each pseudo-spot in the osmFISH data. (E) Major estimated cell type of each spot inferred by 10 methods on the Visium mouse SSp dataset with the
default gene subset using the external SSp reference. (F) Major estimated cell types of each bead/spot inferred by 8 methods on the Slide-seqV2 mouse
SSp dataset with the default gene subset using the external SSp reference. Methods missing in each panel indicate that they did not produce results

using the corresponding reference and ST data.

ST data. When applied to the Slide-seqV2 data, RCTD
and stereoscope agree the most with the osmFISH
reference cell atlas. Adroit fails to accurately capture
the proportion of L2/3 IT CTX-1 cells and other methods
provide a rather noisy cell atlas (Figure 4F). We note
that the performance of DSTG in the SSp Visium tissue
differs substantially from their own evaluation. This
may be due to stochasticity incurred by randomly
selecting cells from scRNA-seq reference data. Moreover,
hyperparameters like the number of nearest neighbors

used in constructing the graph also influence the final
results.

As a conclusion, most methods, especially Tangram
and DSTG, achieve excellent performance when using
perfectly matched internal references. With internal
reference, Adroit, cell2location, RCTD and stereoscope
still provide satisfactory cell-type proportion estimation
despite the limited number of genes available. RCTD and
stereoscope outperform other methods when external
reference is used regardless of the gene number and
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platform. Cell2location performs reasonably well on
Spatial Transcriptomics and Visium data when there are
a sufficient number of genes.

Discussion

As ST technologies continue to evolve rapidly, we antici-
pate more advanced technology that captures single-cell
resolution data as well as measures expression levels
of as many genes as possible. Commercially available
sequencing-based ST technologies, however, cannot yet
achieve single-cell resolution when measuring whole
transcriptome profiles. Data generated from these
technologies, thus entail the inference of cell-type
composition. Deconvolution of ST data has already
been demonstrated to aid downstream analysis such
as detecting spatial expression patterns in spot-level
data [38]. It is essential to accurately estimate cell-
type composition and make appropriate adjustments
accordingly to ensure validity and enhance power in
downstream analysis, including identification of spatial
domains and spatially variable genes [39], study of
cell-cell communication and evaluation of the impact
on molecular function and ultimate phenotype [1, 2,
40]. An incorrect inference of cell-type composition
could lead to misunderstandings of tissue structure
and function, including spurious findings and impaired
power in various other downstream analyses. In this
review, we have benchmarked the performance of 10
ST deconvolution methods using six real datasets.

Our study evaluates the performance in three tissues:
MOB, developing human heart and mouse SSp region.
We used a combination of single-cell resolution ST
data and spot-level ST data. The advantage of using
pseudo-spots constructed from single-cell resolution
ST data, by pooling cells into pseudo-spots according
to their spatial coordinates, is that the true cell-type
proportions are established based on the contributing
cells at each constructed spot. The potential issue is
that pseudo-spots may not reflect characteristics of
real ST spots. We assess whether the pseudo-spots
constructed from single-cell resolution ST data exhibit
similar characteristics as the real spot-level ST data
by checking the gene expression distribution across
data sources (Supplementary Figures 17-19). Most of the
genes display very similar patterns across data sources,
suggesting that our evaluations on the pseudo-spots
could reflect performance on real spots. We quantify the
deconvolution performance using RMSE and distance
correlation. We further examine the difference between
ground truth and estimated cell-type proportion of each
cell type.

For spot-level ST data, we do not have ground
truth, rendering evaluations more challenging. As
aforementioned, developers of these deconvolution
methods, encountering similar difficulties, used visual
inspection of expected structural patterns or assessment
of performance in downstream analysis (e.g. clustering
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spots into their expected anatomical layers). Here, we
compare the inferred cell-type proportions to carefully
matched single-cell resolution datasets.

We evaluate all methods using both internal and exter-
nal references. Most methods perform reasonably well
when using the internal reference, especially for Tan-
gram and DSTG. Tangram infers cell composition by
mapping cells in reference to their spatial origin, and
DSTG constructs synthetic ST data by randomly pooling
cells from the reference. When the internal reference
is employed, the data perfectly fit the assumption of
these two methods, which explains their best perfor-
mance. In comparison, DestVI appears to show inferior
performance when applied to pseudo-spots constructed
from single-cell resolution ST data. This may be due
to the lack of continuous variation within cell types or
the limited number of spots/genes to train the com-
plex latent variable model. When we evaluate the meth-
ods using an external reference, most methods show
a non-negligible performance loss. Among them, RCTD
and stereoscope demonstrate robustness and remain the
top performers. Cell2location shows comparable perfor-
mance when the gene number is sufficient (e.g. >100).
When the number of genes is small, cell2location suffers
dramatically, potentially because the multilayer Bayesian
modeling in cell?location becomes too complicated to
obtain a good fit for the shared parameters between
genes. RCTD corrects potential batch effects through an
additional platform effect normalization step by quan-
tifying the random effect of each gene. Stereoscope and
cell?2location both incorporate a gene-specific parameter
when modeling gene expression distribution. These mod-
eling features empower the three methods to accommo-
date potential systematic differences between scRNA-
seq reference and target ST data, resulting in their robust
performance when switching from internal to external
reference.

Additionally, we perform experiments to evaluate the
impact of choices of genes used for inference. We have
benchmarked robustness and time complexity, providing
insights regarding the best choice of gene subset for
each method. Most methods attain their best perfor-
mance with the default gene subset and perform simi-
larly with a comparable number of either marker genes
or HVGs. SPOTlight and spatial DWLS exhibit significantly
improved performance when employing marker gene
subsets (in contrast to HVGs), which is due to the nature
of the NMF + NNLS method that requires a marker gene
profile for each cell type.

STdeconvolve, as the only reference-free method in
our evaluation, shows rather unstable performance
across tissue, gene subsets and references due to a
few reasons. The main advantage of STdeconvolve is
that no reference is needed. Its LDA framework offers
a flexible and intuitive way to model spots as a finite
mixture of an underlying set of cell types. LDA and thus
STdeconvolve may fail to deconvolve cell types that have
very similar transcriptional profiles or those that cannot
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be well differentiated by differences in gene expression,
volume or morphology. STdeconvolve is expected to work
better with a large number of spots, ideally in thousands,
while some of the ST data we evaluated contain only a
few hundred spots. Another practical consideration is
that we still need to annotate the clusters inferred by
STdeconvolve to their corresponding cell types, which
is usually achieved by using scRNA-seq data. It can
be challenging to compare STdeconvolve with other
reference-based methods when inferred clusters cannot
be mapped to real cell types. Therefore, we effectively still
need scRNA-seq data as reference, but post-inference for
reference-free STdeconvolve rather than pre-inference
for all other reference-based methods.

The three tissues we analyzed exhibit distinct tissue
structures. There are seven FOVs of MOB that are pre-
dominantly constituted by neurons and interneurons.
In comparison, a more clustered structure can be seen
during the development of human heart tissue, where
spots are composed of more cell types than MOB or
mouse SSp, and therefore have a higher entropy. Mouse
SSp is a multi-layered tissue, and cell types change as
depth within the cortex increases. For each layer, there
are a small number of major cell types in each spot,
explaining its small entropy (Supplementary Figure 2D).
The majority of the methods perform better on MOB
and mouse SSp tissues, where the cellular composition is
simpler than that of the developing human heart. In the
developing human heart, by contrast, several similar cell
types (especially cardiomyocytes, ventricular cardiomy-
ocytes and atrial cardiomyocytes) span across the whole
tissue and colocalize with other cell types. For this tissue
with more complex cell-type composition, stereoscope
and RCTD are observed to be more effective at distin-
guishing the pattern (Supplementary Figure 8).

In summary, RCTD and stereoscope exhibit consis-
tently high performance across tissues. STdeconvolve,
as the only reference-free method, has the capability
for identifying tissue structure and cell mixture, but
cell-type mapping must be addressed carefully. We have
thoroughly evaluated various scenarios, encompassing
different tissues, varying technologies and data reso-
lution, different numbers of single cells and spots, as
well as varying number and type of genes employed
for analysis. Based on our results, we recommend that
investigators first identify some of our evaluated sce-
nario(s) that best match their own data and select best
performing methods under these scenario(s). The choice
of reference, preferably from carefully matched tissue
and biological samples, is also essential for deconvolving
ST data. Mismatched scRNA-seq references or references
with inaccurately annotated cells could severely impair
deconvolution performance. In addition, while out of the
scope of this work, denoising and dimension reduction
of noisy and high dimensional ST data can allow more
effective information extraction [41]. We also anticipate
that cell-type deconvolution further benefits from devel-
opment and advancement of methods that effectively

denoise and reduce the dimension of ST data. In the
meantime, we believe that our comprehensive evalua-
tion results, along with careful review of the theoretical
and modeling properties of the methods, provide useful
guidelines for the deconvolution of ST data.

Methods
Evaluation metrics

For single-cell resolution ST datasets, we pooled the
cells according to their spatial coordinates to construct
pseudo-ST spots to mimic real ST spots. In this way, we
have the truth of the cell-type mixture in each pseudo
spot. Then RSME, distance correlation and differences
were computed between the estimated and ground truth
cell-type proportion.

We denote the ground truth cell-type proportion of
cell type r at spot k as yx and the estimated proportion
as yn. RSME, difference (which is cell type-specific) and
distance correlation are calculated as follows:

RMSEy, = f 2’

cell types.

where R is the total number of

Difference = jx — yne

The empirical distance covariance V2(Y,,Y;) of cell
typer is defined by

V2 (Y,,\?,) = (1/K%) D" ABm
Rl

where

Al =Yk — Y, b =Y — I R, I1=1,... K,

Akl = Arkl — Grk. — Q] + Gy,

Bt = by — be. — by + by

and the subscript denotes that the mean is computed for
the index that it replaces. K is the total number of spots.

Similarly, V2(Y;) is the non-negative number defined
by

V2 (V) = V2 (Y, Yy = (1/K%) D A
k1

The empirical distance correlation deor(Y,, ¥y is
defined as

deor (Yy,?y) —V? (Y,,?,) /.2 (Y V2 (?,)

Then the distance correlation across cell types is cal-

culated by dcor(Y, ) = w where again R is the
total number of cell types [42].
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Entropy to quantify tissue complexity

To characterize the complexities of the various types of
tissues in our analysis, we computed entropy for each
pseudo-ST spot similar to [43]. Specifically, suppose for
an artificial spot k, there exists R different cell types and
the true mixing proportion of cell type r is yu, then the
spot-level entropy is calculated as:

R
H(k) = — > yrlog (yr)

r=1

A higher entropy value indicates a more complex mix-
ing structure for the corresponding spot, while a lower
entropy value indicates that the spot is primarily com-
posed of one or few cell types.

Data preprocessing

We utilized six data sets to test the ST deconvolution
methods in this study. The data preprocessing steps are
summarized as follows.

SeqFISH+ generates the single-cell level ST data from
MOB. For each field of view (FOV), all cells that are located
in the same 400 x 400 square pixel area are pooled into
one spot. The single-cell level data is also used as the
internal reference. Genes expressed in at least 3 cells and
cells that have at least 200 features and at most 2500
features are kept in analysis. Seven fields of views are
combined as one input file for all eight methods. For MOB
external scRNA-seq data, we only kept genes that are
presentin at least 2% of cells and cells that have at least
200 features and at most 2500 features.

The human heart ISS data is also a single-cell
resolution ST data. There are two slides of ISS data and
we analyzed the PCW6.5_1 slide (picked randomly from
the 2). Genes expressed in at least three cells are kept in
analysis. Cells that are co-located in the same 454 x 424
square pixel area were pooled as one ST spot. For human
heart Spatial Transcriptomics ST data, we chose the
FH6_1000L2_CN74_D1 slide. We only kept genes that are
present in at least 2% of spots and spots that have at
least 200 features and at most 3000 features. For the
heart external scRNA-seq data, we removed immune
cells and erythrocytes to match the ISS data. Genes that
are present in at least 2% of cells and cells that have at
least 200 features and at most 5000 features were kept in
the analysis. We note in the name of (2) and (4) cell types,
‘fribroblast-like’ is likely a typo and probably should be
‘fibroblast-like’. We did not change it in the legend to be
consistent with the original paper [31].

For the mouse brain’s primary somatosensory region
(SSp), we have the osmFISH data, which is a single-cell
level ST data. Similarly, cells that are located in the same
800 x 800 square pixel area are pooled as one spot. The
single-cell level data are also used as the internal refer-
ence. We used two spot-level ST data: Visium and Slide-
seqV?2 [13, 15]. Mouse brain single-cell data are obtained
from Yao et al. [11] and only cells from the SSp, Visp and
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MOp regions are kept in analysis, with cells from each
region separately used as reference. For ST data, we only
keep genes that are present in at least 2% of spots. For
scRNA-seq data, we remove cells that are not confidently
assigned a class label by the original paper. Only genes
that exist in both scRNA-seq and ST data are used in
deconvolution analysis.

Selection and processing of single-cell level ST
data to match spot-level ST data

To reasonably interpret deconvolution results in spot-
level ST data, we carefully match them to single-cell reso-
lution ST data. Specifically, single-cell resolution ST data
from similar biological samples or with similar tissue
structure are selected. For the developing human heart
tissue, we select the single-cell level PCW6.5_1 ISS data
to match the spot-level PCW6.5 FH6_1000L2_CN74_D1
Spatial Transcriptomics slide [31]. For the SSp tissue, we
crop the single-cell level osmFISH [9] data by keeping
row (or y) pixel > 22 880 to match the shape of spot-level
Visium ST data (specifically, the ST8059048 slide). The
SSp spots, as well as some ambiguous adjacent spots, are
selected by our pathologist to keep in the analysis. For
spot-level Slide-seqV2 data, we use the Puck_200306_03
slide and crop the data with 2300 <x pixel < 4000 and
500 <y pixel < 2300 according to Figure S4A in the Slide-
seqV2 paper [13]. For MOB, we matched the Rep8 Spatial
Transcriptomics [6] slide to the seqFISH+ data. We only
used the MOB Spatial Transcriptomics for calculating the
gene expression distribution (Supplementary Figure 17).

Gene subsetting and gene subset employed in
the ST deconvolution methods

All gene subsettings are accomplished using the R
package Seurat [25]. HVGs are selected using feature
variance calculated by the FindVariableFeatures function
with default settings. Marker genes are selected using
the FindAllMarkers function with a log-fold-change
threshold of 0.75. Both positive and negative markers are
included in the marker gene subset. Top marker genes
are selected according to P-values.

Default gene subset used in each deconvolution
method

Adroit, cell2location, DestVI, stereoscope and Tangram
[14-16, 19, 23] do not have a built-in gene filtering strat-
egy. Top 2000 HVGs are used in the analysis. SPOTlight
[21] uses a mixture of marker genes for each cell type
and the top 500 HVGs. Note here we follow the SPOTlight
pipeline and keep only positive markers when selecting
marker genes. We use the default parameters of RCTD
and run RCTD in full mode. By default, RCTD [17] has
a built-in marker gene selection step where only genes
with normalized gene expression >=0.0002 are included,
and it selects cell-type marker genes based on a log-fold-
change threshold of 0.75. Only selected cell-type marker
genes are fed into RCTD. For STdeconvolve inference, fol-
lowing the software pipeline, we remove genes detected
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in <2% of spots or genes expressed in all spots. STdecon-
volve then selects genes by choosing significantly over-
dispersed genes across spots to detect transcriptionally
distinct cell types. By default, only the top 1000 or fewer
most over-dispersed genes are retained for STdeconvolve
inference. DSTG selects the top 2000 most variable genes
by default, across different cell types in the reference
scRNA-seq data according to adjusted ANOVA P-values
with Bonferroni correction. Spatial DWLS selects cell-type
marker genes from the scRNA-seq data by Giotto’s [30]
built-in differential expression analysis tools.

Note that after selecting the gene subset, there may
appear a situation that some of the spots do not express
some of the selected gene(s). Such spots are removed
from further analysis.

Other technical details

DSTG and spatialDWLS failed to run with the mouse
brain SSp Slide-seq V2 data, which is the sparsest
dataset among all ST data we analyzed, containing
97% zero counts. SpatialDWLS did not run for ST data
with a small number of genes (e.g. ISS and osmFISH).
For the gene subset analysis on MOB seqFISH+ data
with internal reference, when the number of genes
was moderate or small, the makeSignMatrixDWLSfrom-
Matrix function from Giotto suite 2.0.0.997 could not
build a gene signature matrix for every cell type (e.g.
interneurons); therefore we did not include those results
for the gene subset analysis with internal reference for
spatial DWLS.

STdeconvolve employs an LDA framework [27]. Several
distinctive aspects of ST data make the LDA framework
an appropriate choice, including but not limited to the
relatively small number of cells and cell types present in
each spot, the relatively large number of spots compared
to the number of cell types, and the heterogeneity of
cell-type composition across spots. The LDA framework
in STdeconvolve follows the standard LDA framework,
where spots, cell types and genes in ST data correspond
to documents, topics and words in standard LDA respec-
tively.

STdeconvolve additionally removes spots with library
size smaller than 100. We follow this guidance for the
developing human heart, and mouse brain data. But for
the seqFISH+ data, we choose to be more lenient and
keep all spots with library size >0 since the spot number
is limited (only 164 spots total). Moreover, STdeconvolve
filters out genes expressed in <2% of the spots. Finally,
we set the number of clusters the same as the num-
ber of cell types in the corresponding reference scRNA-
seq dataset. All other parameters are set as default. To
select the optimal number of cell types when not pre-
specified, STdeconvolve calculates a perplexity for each
model based on the posterior likelihood of the observed
data conditional on deconvolved cell-type assignments.
STdeconvolve also reports the number of rare cell types
(average mean spot proportion < 5% across spots) to help
set an upper bound on the total number of deconvolved

cell types. The optimal number of cell types is chosen
with lowest perplexity and minimized number of rare cell
types.

To annotate STdeconvolve inferred clusters, we fol-
lowed the transcriptional correlations method described
in the software documentation ‘Annotating deconvolved
cell-types’ section, where we computed Pearson corre-
lation of transcriptional profiles between each inferred
cluster and reference biological cell types from matched
single-cell RNA-seq data. Inferred clusters were anno-
tated to the reference cell type with the highest Pearson
correlation that was >0.5. We used the same scRNA-seq
dataset that was used as reference in other methods for
fair comparison. We mapped only one reference cell type
to each inferred cluster. However, multiple inferred clus-
ters can be mapped to the same reference cell type. When
this happened, we added up the estimated proportions
from multiple inferred clusters as the final predicted pro-
portion for that reference cell type for evaluation. Note
here, there might be some reference cell types that had a
correlation >0.5 with inferred clusters but ended up not
having any inferred cluster mapped to it. This happens
when the candidate inferred cluster(s) had a higher cor-
relation with some other reference cell type. For exam-
ple, for the developing human heart deconvolution with
internal reference (Supplementary Figure 11), reference
cell type (4) has 0.89 correlation with inferred cluster
1 and 0.92 correlation with inferred cluster 2. However,
inferred cluster 1 has 0.95 correlation with reference
cell type (3) and inferred cluster 2 has 0.93 correlation
with reference cell type (8). With the above conditions,
reference cell type (4) is excluded from evaluation.

The cell-type labels of inferred clusters can be further
evaluated by performing a rank-based gene set enrich-
ment analysis of upregulated genes in each cell type. We
can choose to annotate only clusters where the enrich-
ment P-value is significant at a certain threshold, and/or
highest positive edge and enrichment score greater than
certain thresholds. Such a strategy, however, may pro-
duce inconsistent results with the transcriptional cor-
relations analysis described above. For example, in our
analysis of the human heart Spatial Transcriptomics
data with external reference, we observed that most clus-
ters can be mapped to a known cell type in the scRNA-seq
reference. For example, inferred cluster 2 was mapped
to ventricular cardiomyocytes based on gene set enrich-
ment analysis, but it also had the highest transcriptional
correlation with atrial cardiomyocytes. While clusters 3
and 4 had the highest transcriptional correlation with
fibroblast-like (outflow tract & valve related), they were
mapped to epicardium-derived cells by gene set enrich-
ment analysis (Supplementary Figure 11). In contrast, for
the mouse brain osmFISH data with external reference,
only cluster 11 could be mapped to a known cell type
L4/5 IT CTX; however, the transcriptional correlation
was only —0.01 (Supplementary Figure 16). Therefore, we
chose not to rely on gene set enrichment analysis for cell-
type annotation in our analysis.
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For DSTG, we set k =100 as the number of nearest
neighbors in our analysis for the human heart ISS, mouse
brain SSp 10x, and mouse brain SSp osmFISH datasets,
since these data have a relatively large number of spots.
For the human heart ST, MOB ST and MOB seqFISH+
default analyses, we tested k =20, 50 and 100 to evaluate
the impact of the number of nearest neighbors on final
results. For the MOB segFISH+ gene subset analysis, we
set k =20 following k =20 performed best in the default
analysis and also the relatively small number of spots.
All other parameters were set as default unless otherwise
specified.

For cell?location, we used 6000 epochs in the single-
cell inference and 30 000 epochs in the ST deconvolution.
For DestVI, the parameter settings are according to the
2021.10.1 tutorial. We used 500 epochs in the single-cell
inference and 4000 epochs in the ST deconvolution. For
stereoscope, 30 000 epochs were used in both single-cell
inference and ST deconvolution. All computations for
these three methods are performed using the NVIDIA
GeForce RTX 3070 GPU. For DSTG, the maximum number
of epochs was set to 200. For SPOTlight, 300 cells per cell
type were employed in the analysis.

Tangram employs an initial step of cell segmentation
to calculate the number of cells for each spot and uses it
as an input to calculate the fraction of cells per spot (a
spatial density prior). For pseudo-ST spots constructed
from single cells, we use the true number of cells per
spot as the input. For real spot-level data, we use the
watershed algorithm in Squidpy [44] python package to
carry out cell segmentation when histological images
are available. When histological images are not available
(such as for Slide-seq data) or cell segmentation results
are not of reasonable quality, we use a uniform spatial
density prior as input for Tangram. All computations are
performed using the Tesla V100-SXM?2 GPU.

T-SNE coordinates were calculated using Seurat_3.2.3
in Rv3.6.0 [25]. We analyzed each scRNA-seq dataset fol-
lowing the standard pipeline with default Seurat param-
eter setting. Principal component analysis (PCA) was per-
formed on genes using RunPCA and the top 10 PCs were
used as input for running RunTSNE in Seurat.

For the mouse olfactory bulb data, we only evaluate
the cell-type proportion for neurons, astrocytes, oligo-
dendrocytes, microglia, endothelial cells and olfactory
ensheathing cells when using external reference. There
are many different neuron cells both in the seqFISH+
data (which were used to construct pseudo-spots)
and in the external scRNA-seq reference. We pooled
various neuron cell types into one cell type: Neuron.
Specifically, for scRNA-seq data, we pooled seven cell
types (n18-EPL-IN, Neuron_AstrocyteLike, Neuron_GC,
Neuron_Inmature, Neuron_M/TC, Neuron_PGC, Neu-
ron_Transition) as Neuron; for seqFISH+, we pooled three
cell types (Interneuron, Neuroblast, Mitral/Tufted Cells)
as Neuron.

To compare the performance of internal versus
external reference in mouse SSp data, cells in the
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osmFISH dataset were mapped, with STANN [37], to new
cell types using the processed external SSp scRNA-seq as
reference. We followed the pipeline described in https://
github.com/sameelab/STANN.

Key Points

e Cell mixture inference is a critical step in the analysis
of spatial transcriptomics (ST) data to mitigate potential
confounding caused by differential cell-type proportions
across spots in downstream analysis.

e Existing ST deconvolution methods can be classified into
three groups: probabilistic-based, non-negative matrix
factorization and non-negative least squares based, and
other methods.

e We compare 10 ST deconvolution methods using three
single cell resolution and three non-single-cell spot res-
olution ST datasets. We provide practical guidelines for
method choice under different scenarios as well as the
optimal subsets of genes to use for inference.

Supplementary data

Supplementary data are available online at https://
academic.oup.com/bib.
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