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Abstract

The three-dimensional organization of chromatin plays a critical role in gene regulation. Recently developed technologies, such as
HiChIP and proximity ligation-assisted ChIP-Seq (PLAC-seq) (hereafter referred to as HP for brevity), can measure chromosome spatial
organization by interrogating chromatin interactions mediated by a protein of interest. While offering cost-efficiency over genome-
wide unbiased high-throughput chromosome conformation capture (Hi-C) data, HP data remain sparse at kilobase (Kb) resolution
with the current sequencing depth in the order of 108 reads per sample. Deep learning models, including HiCPlus, HiCNN, HiCNN2,
DeepHiC and Variationally Encoded Hi-C Loss Enhancer (VEHiCLE), have been developed to enhance the sequencing depth of Hi-C
data, but their performance on HP data has not been benchmarked. Here, we performed a comprehensive evaluation of HP data
sequencing depth enhancement using models developed for Hi-C data. Specifically, we analyzed various HP data, including Smc1a
HiChIP data of the human lymphoblastoid cell line GM12878, H3K4me3 PLAC-seq data of four human neural cell types as well as of
mouse embryonic stem cells (mESC), and mESC CCCTC-binding factor (CTCF) PLAC-seq data. Our evaluations lead to the following
three findings: (i) most models developed for Hi-C data achieve reasonable performance when applied to HP data (e.g. with Pearson
correlation ranging 0.76–0.95 for pairs of loci within 300 Kb), and the enhanced datasets lead to improved statistical power for detecting
long-range chromatin interactions, (ii) models trained on HP data outperform those trained on Hi-C data and (iii) most models are
transferable across cell types. Our results provide a general guideline for HP data enhancement using existing methods designed for
Hi-C data.
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Introduction
Mammalian genome folds into a complex three-dimen-
sional (3D) structure in the nucleus, facilitating cis-
regulatory elements to regulate genes up to megabase
away [1]. The unbiased genome-wide high-throughput
chromosome conformation capture (Hi-C) technology
has been widely adopted for studying chromatin spatial
organization [2]. However, Hi-C usually requires billions
of reads to achieve kilobase (Kb) resolution, which is
cost-prohibitive [3, 4]. Most existing Hi-C data are of
∼500 million or fewer raw reads, preventing subsequent
Kb resolution analysis. To enhance Hi-C data, several
computational methods, including HiCPlus [5], HiCNN
[6], HiCNN2 [7], DeepHiC [8] and variationally encoded
Hi-C loss enhancer (VEHiCLE) [9] have been recently
proposed. All five methods are based on deep neural
network with different architectures. Specifically, HiC-

Plus uses three layers of convolution neural networks
(CNN) [10] to construct the mapping from low-depth
Hi-C data to high-depth Hi-C data; HiCNN adopts a 54-
layer CNN with skip connections [11]; HiCNN2 extends
HiCNN and ensembles three deep learning models [7];
DeepHiC utilizes generative adversarial networks (GAN)
framework [12]; and VEHiCLE pretrains a variational
autoencoder [13] model and fine-tunes a GAN model.
This is an active research area with multiple more recent
methods developed for enhancing Hi-C data [14, 15].

In 2016, HiChIP and proximity ligation-assisted ChIP-
Seq (PLAC-seq) technologies [16, 17] were proposed
to measure protein-mediated chromatin interactions.
While offering higher signal-to-noise ratio (SNR) and bet-
ter cost-efficiency over genome-wide unbiased Hi-C data,
HP data are still sparse at Kb resolution with the current
sequencing depth of typically several hundred million
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raw reads per sample. Computationally enhancing the
depth of HP data can facilitate downstream analysis,
such as identification of long-range enhancer–promoter
interactions, and prioritization of putative casual genes
of genetic variants associated with human complex
diseases and traits. No method has been developed for
HP data enhancement and the aforementioned methods
developed for Hi-C data [i.e. HiCPlus, HiCNN, HiCNN2,
DeepHiC and VEHiCLE [5–9] have not been evaluated for
their performance on HP data yet.

To benchmark the performance of these methods
when applied to HP data, we conducted a systematic
evaluation using seven publicly available HP datasets,
namely, Smc1a HiChIP data from the human lym-
phoblastoid cell line GM12878 [17], and H3K4me3 PLAC-
seq data from five cell types including the mouse
embryonic stem cells (mESC) [18] and four human fetal
brain cell types [19], and mESC CCCTC-binding factor
(CTCF) PLAC-seq data [18]. We focused on three aspects
in our evaluation: (i) the relative performance among
the assessed methods; (ii) whether training with HP data
leads to improved performance than training with Hi-C
data and (iii) transferability of the trained models across
datasets.

Results
Overview of the evaluation framework
In this study, we mainly applied three existing meth-
ods (HiCNN2, HiCPlus and DeepHiC) designed for Hi-
C data to enhance the sequencing depth of HP data
(Figure 1). We also explored HiCNN and VEHiCLE but
chose not to include them for most assessments because
HiCNN has a highly similar performance as HiCNN2
(Supplementary Figures S1 and S2, see Supplementary
Data available online at https://academic.oup.com/bib);
and VEHiCLE’s specific features tailored for Hi-C data
render it suboptimal for HP data (Supplementary Figure
S3, see Supplementary Data available online at https://
academic.oup.com/bib). First, we generated low-depth
HP (‘baseline’) datasets from mESC H3K4me3 PLAC-seq
data and GM12878 Smc1a HiChIP data with different
downsampling ratios (Data preprocessing in Methods
section). We similarly generated low-depth mESC CTCF
PLAC-seq data and H3K4me3 PLAC-seq data for four
human brain cell types with downsampling ratio of 0.125.
Next, we split each dataset into training and testing
datasets with the training dataset consisting of chromo-
somes 1, 2, 3, 5, 7 and 9 (chromosome 2 was used as
the validation data, as part of the training procedure, to
select the best model); and the testing dataset containing
all the other chromosomes (chromosomes 4, 6, 8, 10–
19 for mESC or chromosomes 4, 6, 8, 10–22 for human
cell types). Then on the training datasets, we applied
each method to train models using the low-depth (i.e.
baseline) input data and the high-depth (i.e. full data
without downsampling) target data and subsequently
applied the trained models to the low-depth testing data

to obtain an enhanced high-depth data (Figure 1). Finally,
we calculated the similarity between the enhanced HP
data and the high-depth HP data (i.e. full data with-
out downsampling for the testing chromosomes, which
serves as the working truth). Specifically, we assessed
similarity using four metrics: Pearson’s correlation coef-
ficient, Spearman’s rank correlation coefficient, Brown-
ian distance covariance (or distance correlation) [20] and
HPrep, a new method to assess the reproducibility of HP
data [21]. For presentation brevity, we have decided to
only show the Pearson correlation coefficient results in
the main text as the other statistics reach qualitatively
the same conclusions. In addition, we performed 3D
peak calling before and after enhancement to assess the
impact of enhancement on the detection of chromatin
interactions.

Next, we compared the performance of each method
using the model trained on HP data to that trained on
Hi-C data (detailed in later section Hi-C or HP data for
training). Lastly, we evaluated the transferability of each
method by enhancing HP data across different cell types
detailed in the later section Model transferability).

Since HP data measure protein-mediated chromatin
interactions, we evaluated enhancement results only for
bin pairs where at least one bin contains the protein of
interest. Specifically, we defined bin pairs where both
bins contain the protein of interest as the ‘AND’ set,
and bin pairs where only one bin contains the protein of
interest as the ‘XOR’ set, following our previous work [18,
21]. We removed bin pairs where neither of the two bins
contains the protein of interest from our downstream
analysis, and only applied abovementioned similarity
metrics (Pearson’s correlation, Spearman’s correlation,
Brownian distance and HPrep) to bin pairs in the ‘AND’
and ‘XOR’ sets. Noticeably, in HP data, bin pairs in the
‘AND’ set usually show higher contact frequency than
bin pairs in the ‘XOR’ set due to double ChIP enrichment.
We thus evaluated similarity for the ‘AND’ and ‘XOR’ sets
separately.

Performance comparison of different methods
We benchmarked the performance of the three methods
(HiCPlus, HiCNN2 and DeepHiC) in terms of enhancing
low-depth HP data at 10 Kb resolution. Note that we
decided not to include HiCNN for most evaluations
because HiCNN and HiCNN2 perform highly similarly
(Supplementary Figures S1 and S2, see Supplementary
Data available online at https://academic.oup.com/
bib). For HiCNN2, which is an ensemble method with
three models (HiCNN2-1, HiCNN2-2 and HiCNN2-3), we
present only HiCNN2-1 for the rest of the manuscript
because the three HiCNN2 models perform almost indis-
tinguishably (Supplementary Figures S1 and S2, see Sup-
plementary Data available online at https://academic.
oup.com/bib). Evaluations of the three methods (namely,
HiCPlus, HiCNN2-1 and DeepHiC) suggest that they
perform reasonably, all significantly outperforming the
low-depth HP data (Figure 2, Supplementary Figures
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Figure 1. Overview of experimental design. (A) Experiments overview: we applied each deep learning method to Hi-C or HP dataset from GM12878 cell
line, mESC and four different human neural cell types to train enhancement models. We then applied those models to enhance the testing datasets.
The yellow, orange and purple blocks on the left side represent training datasets (trained on chromosome 1, 3, 5, 7, 9 and validated on chromosome 2)
from mESCs, GM12878 and human brain cells, respectively. The tree structure in each block contains high-depth datasets (which are the target datasets,
shown as parental nodes in darker colors) and low-depth datasets (which are the input datasets, shown as offspring nodes in lighter colors). Note that the
low-depth datasets were created by downsampling from high-depth datasets (see details in Methods). On the right side, the green block represents the
testing datasets. (B) Model training: this panel shows the overall training procedure. The deep learning models learn the features (blue block) which can
enhance the sequencing depth of input dataset. The loss (prediction error) measures the difference between an estimated value and its true value, and
the gradient of loss can optimize the parameters of the neural networks (see ‘The Principle of Deep Learning’ section under Methods). (C) Enhancing HP
data. This panel shows that we first applied pre-trained models on testing datasets and then evaluated the performance of each model by comparing
the enhanced datasets (prediction) with their corresponding high-depth datasets (ground truth) with four metrics (Pearson correlation coefficient,
Spearman’s rank correlation coefficient, Brownian distance covariance [20] and HPrep [21]). We additionally evaluated the impact of enhancement on
3D peak calling.

S4 and S5, see Supplementary Data available online
at https://academic.oup.com/bib). For example, when
using HiCNN2-1 to enhance the GM12878 HiChIP data
by 25x (i.e. from 0.04 depth to full), Pearson correlation
coefficients for the ‘AND’ set are 0.70–0.81, which are
0.09–0.24 higher than the low-depth data, when the
genomic distance is 20–250 Kb (Figure 2A). Similarly,
when using HiCPlus to enhance the mESC PLAC-seq
data by 25x, Pearson correlation coefficients for the
‘XOR’ set are 0.44–63, 0.16–0.21 higher than the low-
depth data, when the genomic distance is 50–500 Kb

(Supplementary Figure S5, see Supplementary Data
available online at https://academic.oup.com/bib). VEHi-
CLE shows inferior performance when enhancing
GM12878 HiChIP data (Supplementary Figure S3, see Sup-
plementary Data available online at https://academic.
oup.com/bib) possibly due to certain features tailored
for Hi-C data that are no longer suitable for HP data. For
instance, VEHiCLE performs Knight-Ruiz (KR) normal-
ization for Hi-C data. However, because HP technologies
enrich chromatin contacts at the region mediated by the
protein of interest, the equal visibility assumption made
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Figure 2. Methods comparison when enhancing GM12878 HiChIP data. Three enhancement methods are compared: HiCPlus, HiCNN2-1 and DeepHiC.
Left panel (A and D) shows performance in 0.04 downsampled data, middle panel (B and E) in 0.0625 downsampled data and right panel (C and F) in
0.125 downsampled data. Performance is quantified with the Pearson correlation coefficient (y-axis). X-axis is the genomic distance in Kb unit. Top row
(A–C) shows performance among bin pairs in the AND set and the bottom row (D–F) shows performance among bin pairs in the XOR set. The gray line
represents the baseline (i.e. low-depth data without any enhancement).

in KR normalization is invalid for HP data. In addition,
VEHiCLE requires all diagonal bin pairs to have nonzero
counts. Therefore, we decided not to pursue further with
VEHiCLE enhancement.

In addition, the three methods perform similarly for
most of the seven HP datasets evaluated, with Pearson
correlation differences largely within a difference of
0.1 (Figures 2 and 3, Supplementary Figures S4 and S5,
see Supplementary Data available online at https://
academic.oup.com/bib). For example, when downsam-
pling ratio is 1/25 and the distance is 20 Kb–1.25 Mb for
the GM12878 HiChIP data, HiCNN2-1 improves Pearson
correlation by 0.024–0.048 and 0.012–0.059 on the ‘XOR’
set, compared with HiCPlus and DeepHiC, respectively
(Figure 2D). For another example, when downsampling
ratio is 1/16 and the distance is 250 Kb–1.5 Mb for
the mESC PLAC-seq data, HiCNN2-1 and HiCPlus
show highly similar performance and improve Pearson
correlation by 0.01–0.09 on the ‘AND’ set, compared to
DeepHiC (Supplementary Figure S5B, see Supplementary
Data available online at https://academic.oup.com/
bib). When enhancing some cell types, for instance,
radial glia (RG) and intermediate progenitor cells (IPCs),
DeepHiC is substantially worse than HiCNN2-1 and
HiCPlus with a difference of 0.2 in Pearson correlation
(Figure 3C, D and H, I). The inferior performance of

DeepHiC may be due to mode collapse issues [22, 23]
for GAN models (more details in the Discussion section).

3D peak calling
3D peak calling, or the detection of statistically signif-
icant long-range chromatin interactions, is one of the
important downstream analyses for various types of
chromatin conformation data, including HP data. To
evaluate the impact of HP data enhancement, we further
applied our model-based analysis of PLAC-seq and
HiChIP (MAPS) pipeline [18] to identify significant chro-
matin interactions before and after enhancement, and
compared them with chromatin interactions detected
from the full data. We treated 3D peak calling results
derived from the full data (without any downsampling)
as the truth. Specifically, we defined true peaks as bin
pairs with MAPS false discovery rate (FDR) <1%, contacts
≥12, and signal to noise ratio (SNR, i.e. the ratio of
observed count over expected count) ≥2; and we defined
true background bin pairs as those with MAPS FDR >10%
and contacts ≥12. We found that even high-depth input
HP data (e.g. 0.5 down-sampled GM12878 HiChIP data
in Figure 4 or 0.5 downsampled mESC PLAC-seq data
in Supplementary Figure S6, see Supplementary Data
available online at https://academic.oup.com/bib, where
the raw sequencing depth is ∼322 million and ∼568
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Figure 3. Methods comparison when enhancing HP data of various cell types. Three enhancement methods are compared: HiCPlus, HiCNN2-1 and
DeepHiC. Downsampling ratio is 0.125 for all five cell types evaluated: mESC (1st column), interneurons (IN, 2nd column), RG (3rd column), IPC (4th
column) and eN (5th and rightmost column). Performance is quantified with the Pearson correlation coefficient (y-axis). X-axis is genomic distance in
Kb unit. Top row (A–E) shows performance among bin pairs in the AND set and the bottom row (F–J) shows performance among bin pairs in the XOR
set. The gray line represents the baseline (i.e. low-depth data without any enhancement).

million, respectively) benefit from enhancement in that
enhanced datasets can improve the power of 3D peak
calling. For example, for 0.5 downsampled GM12878
HiChIP data (Figure 4), the baseline (i.e. downsampled
data before enhancement) has a low sensitivity of 0.32,
while the enhanced data (using HiCPlus or HiCNN2)
improve the sensitivity to 0.71–0.72, while maintaining
the desired FDR 1%. DeepHiC increases sensitivity even
more drastically but fails to maintain the desired 1%
FDR. Similarly, we observed clear improvement with
enhanced datasets for 0.5 downsampled mESC PLAC-
seq data (Supplementary Figure S6, see Supplementary
Data available online at https://academic.oup.com/bib).
Observing that the FDRs from baseline is essentially 0, we
relaxed the MAPS-FDR threshold to 0.2 for the baseline,
which led to an actual FDR of 0.02, comparable to that
after enhancement. With the relaxed FDR threshold,
the power of the baseline increased substantially,
from 0.32 to 0.6 but still clearly lower than 0.71 after
enhancement (Figure 4). Similar patterns were observed
for 0.5 downsampled mESC data (Supplementary Figure
S6, see Supplementary Data available online at https://
academic.oup.com/bib).

We additionally examined SNR (again defined as the
ratio of observed count over expected count) before and
after enhancement, both compared to SNRs from the
full data without enhancement. We found that SNR
estimates from baseline data without enhancement are
significantly lower than those from full data (Supple-
mentary Figure S7B, see Supplementary Data available
online at https://academic.oup.com/bib). Treating the
estimates from full data as the working truth, these
results indicate that baseline data tend to underestimate
the magnitude of 3D peaks. Data enhancement mitigates
the underestimation issue, with enhanced data produc-
ing SNR estimates more closely approaching the working
truth (Supplementary Figure S7C, see Supplementary
Data available online at https://academic.oup.com/bib).

Although we observed a significant difference in SNR
estimates both at 3D peaks (Supplementary Figure S7E,
see Supplementary Data available online at https://
academic.oup.com/bib) and at background bin pairs
(Supplementary Figure S7F, see Supplementary Data
available online at https://academic.oup.com/bib), we
noticed that the absolute difference is more pronounced
among 3D peaks. Specifically, mean and median SNR
at 3D peaks are 4.43 and 4.07 at baseline, 4.90 and
4.37 after HiCNN2-1 enhancement and 4.99 and 4.38
when using the full data (Supplementary Figure S7E,
see Supplementary Data available online at https://
academic.oup.com/bib). In contrast, the mean and
median SNR at background bin pairs are 0.97 and 0.94,
0.98 and 0.97, and 1.01 and 0.99, respectively, with only
≤0.05 absolute difference. The statistical significance at
background bin pairs is driven primarily by the huge
number of background bin pairs (Supplementary Figure
S7F, see Supplementary Data available online at https://
academic.oup.com/bib).

Encouraged by the power improvement in 3D peak
calling genome-wide, we proceeded to examine two spe-
cific loci in mESCs where previous studies [24, 25] have
established enhancer–promoter interactions. These two
loci are Med13l and Mtnr1a loci (Figure 5). From Figure 5,
we observe that baseline without enhancement fails to
identify many 3D peaks, including the most important
EPIs. After HP data enhancement, we were able to rescue
some of the EPIs. For example, for the two bin pairs
corresponding to EPIs at the Med13l locus (illustrated
with black arrows), full data identified both; baseline
identified only one, while every enhanced data were able
to rescue the missed one (Figure 5A–E). Similarly, for
the bin pair corresponding to EPI at the Mtnr1a locus
(illustrated with black arrows), full data identified it;
baseline failed to detect it, while again every enhanced
data managed to rescue the signal (Figure 5G–K).
Interestingly, simply multiplying the baseline matrix
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Figure 4. 3D peak calling in 0.5 downsampled GM12878 HiChIP data. Left panel (A) shows sensitivity. Right panel (B) shows FDR. The truth (3D peaks
or not) is established by peak calling via MAPS from full data without any downsampling. Specifically, true peaks are bin pairs with MAPS FDR <1%,
contacts ≥12 and signal to noise ratio (SNR, i.e. the ratio of observed count over expected count) ≥2. True background bin pairs are those with MAPS
FDR >20% and contacts ≥12. Baseline0.2 bars show the 3D peak calling performance when relaxing the MAPS-FDR threshold from 1 to 20%.

with a constant of 8 can rescue the EPIs at the Med13l
locus (Figure 5F), suggesting that simple amplification of
the contact frequency matrix may help 3D peak calling
when the input data are of low depth. However, this
simple strategy still fails to detect the EPI at the Mtnr1a
locus (Figure 5L), showcasing the advantage of data
enhancement.

Finally, we assessed whether the identified chromatin
interactions relate to gene expression. As shown in Sup-
plementary Figure S8 (see Supplementary Data available
online at https://academic.oup.com/bib), we found that
genes with promoters involving 3D peaks show signifi-
cantly higher expression levels than genes whose pro-
moters do not involve any 3D peaks. The fact that genes
with 3D peaks identified from baseline data without any
enhancement are expected as they tend to be the lower
hanging fruits with stronger magnitude of chromatin
interactions that can be detected by low-depth data.

Hi-C or HP data for training?
We then evaluated the robustness and relative per-
formance of HP depth enhancement for each method
when training models with different assays, specifically
Hi-C or HP. For enhancing the GM12878 HiChIP data,
HiCPlus, HiCNN2 and DeepHiC, all showed comparable
or improved enhancement by using models trained on HP
data than trained on Hi-C data (Figure 6; Supplementary
Figures S9–S11, see Supplementary Data available
online at https://academic.oup.com/bib). For example,
when enhancing the GM12878 HiChIP data by 8X (i.e.
enhancing 1/8 downsampled data to full data), Pearson
correlation coefficients using the HiCPlus model trained
on HP data improved by up to 0.11 for the ‘AND’ set and
0.04 for the ‘XOR’ set, compared with models trained
on Hi-C data (distance: 250 Kb–2 Mb, Figure 6A and

D). Similarly, HiCNN2 and DeepHiC models trained on
HP data demonstrated overall improved or comparable
performance than those trained on Hi-C data, with more
obvious improvement than HiCPlus. For example, within
250 Kb–2 Mb distance, HiCNN2 (Figure 6B and E) and
DeepHiC (Figure 6C and F) improve Pearson correlation
coefficient by 0.15 and 0.18 for the ‘AND’ set and 0.08 and
0.11 for the ‘XOR’ set, compared with the aforementioned
0.11 and 0.04 for HiCPlus (Figure 6A and D).

However, when enhancing the mESC PLAC-seq data,
we observed mixed results using models trained on HP
data versus those trained on Hi-C data, (Supplementary
Figures S12–S14, see Supplementary Data available
online at https://academic.oup.com/bib). Specifically,
HiCPlus showed similar performance using HP data (light
yellow) or Hi-C data (dark yellow) for training (Supple-
mentary Figures S12–S14 left panels, see Supplementary
Data available online at https://academic.oup.com/bib);
HiCNN2-1’s HP trained models (light red) outperformed
its Hi-C-trained models (dark red) (Supplementary
Figures S12–S14 middle panels, see Supplementary Data
available online at https://academic.oup.com/bib), while
DeepHiC’s HP-trained models (light blue) were inferior
to its Hi-C-trained models (dark blue) (Supplementary
Figures S12–S14 right panels, see Supplementary Data
available online at https://academic.oup.com/bib).

One possible explanation for DeepHiC’s better perfor-
mance of mESC Hi-C-trained models is the much higher
sequencing depth of mESC Hi-C data relative to mESC
PLAC-seq data. Specifically, mESC Hi-C data is 4.59x that
of mESC PLAC-seq data, in terms of informative reads
(Table 1). Such drastic depth difference could render
the models trained on Hi-C data more advantageous
than those trained on HP data for all three methods
(Supplementary Figures S12–S14, see Supplementary

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac145/6576178 by Johns H

opkins U
niversity user on 19 July 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac145#supplementary-data


Evaluation of Hi-C data enhancement methods | 7

Figure 5. 3D peak calling at Med13l and Mtnr1a loci. 3D peaking calling results from MAPS are shown. Top panel (A–F) is for the Med13l locus and bottom
panel (G–L) is for the Mtnr1a locus. From left to right, we show MAPS peak calling results from the full data (without any downsampling), baseline
(0.125 downsampled mESC data without enhancement), HiCPlus enhanced data, HiCNN2-1-enhanced data, DeepHiC enhanced data and baseline×8
(by simply multiplying the baseline matrix with a constant 8). 3D peaks, bin pairs with MAPS FDR <1%, are indicated by blue circles. For the full data
(leftmost column), we further require contacts ≥12, while for baseline and enhanced data, we relax the criterion to contacts ≥2. The gene track is shown
on the very left margin and the enhancer regions are shown at the bottom of the left panel as black rectangles. Gene and enhancer information are
visualized with the help of WashU Epigenome Browser [32]. Bin pairs corresponding to the annotated enhancer–promoter regions are marked by black
arrows.

Figure 6. HiChIP-trained versus Hi-C-trained models when enhancing GM12878 HiChIP data by 8x. Performance is assessed by Pearson correlation
coefficient. Each subfigure represents the performance of one of three read depth enhancement methods (HiCNN2-1, HiCPlus and DeepHiC) for a
certain set (AND set or XOR set). In each subfigure, we show how Pearson correlation coefficient (y-axis) changes with genomic distance (x-axis), where
the distance ranges from 20 Kb to 2 Mb with an increment of 10 Kb. The gray line represents the baseline (i.e. low-depth data without any enhancement).

Data available online at https://academic.oup.com/
bib). Particularly in DeepHiC, we observed an obvious
advantage of Hi-C-trained models over HP-trained
models. To reduce the impact of the different sequencing
depths, we downsampled mESC Hi-C data so that its
informative reads are comparable to those in mESC
PLAC-seq data (Generating HiC_Downsampled data in

Methods section). After downsampling, we obtained
59.2 million informative reads in downsampled Hi-
C data (HiC_downsampled), matching that (also 59.2
million) in PLAC-seq data (Table 1). We then retrained
DeepHiC models using the downsampled Hi-C data.
With a comparable number of informative reads, models
trained on the downsampled Hi-C data showed worse
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Table 1. Read counts for HP and Hi-C datasets

Read counts for HP and Hi-C dataset

aRaw reads in
full data

aInformative
reads bin full data

aInformative reads bin downsampled data

Downsampling ratio None None 0.04 0.0625 0.125 0.25 0.5
GM12878 HiChIPa 643 644 994 28 762 260 1 149 807 1 797 116 3 593 523 7 191 222 14 187 319
mESC H3K4me3 PLAC-seqa 1 135 198 787 59 229 165 2 370 623 3 700 378 7 404 377 14 807 009 29 613 854
mESC CTCF PLAC-seqa 345 816 091 17 372 561 694 895 1 085 777 2 171 563 4 343 135 8 686 277
IN H3K4me3 PLAC-seqc 2 747 206 906 13 387 780 535 499 836 728 1 673 465 3 346 938 6 693 884
IPC H3K4me3 PLAC-seqc 1 837 960 692 15 171 775 606 862 948 226 1 896 464 3 792 937 7 585 882
eN H3K4me3 PLAC-seqc 1 740 000 000 20 547 587 821 895 1 284 213 2 568 439 5 136 889 10 273 789
RG H3K4me3 PLAC-seqc 1 487 624 144 14 180 735 567 217 886 285 1 772 582 3 545 177 7 090 363
GM12878 Hi-C 6 524 520 477 256 378 089 10 257 207 16 023 348 32 057 797 64 087 648 128 177 761
mESC Hi-C 7 260 480 082 272 146 960 10 885 391 17 002 222 34 005 844 68 045 585 136 067 650
GM12878 ratio (Hi-C/HP) NA 8.914 8.921 8.916 8.921 8.912 9.035
mESC ratio (Hi-C/HP) NA 4.595 4.592 4.595 4.593 4.595 4.595
mESC Hi-C_downsampleda NA 59 228 684 2 369 794 3 700 223 7 405 280 13 369 886 26 757 578

This table contains the read count information for all datasets used in this study. Leftmost column shows the dataset names. IN, interneurons; IPC, intermediate
progenitor cell; eN, excitatory neuron; RG, radial glia. aRetaining only bin pairs with genomic distance between 10 Kb and 2 Mb. b#Informative reads is the number
of bin pairs after removing invalid self-ligation read pairs, short-range reads, blacklist regions, bins with mappability <0.9 and all ‘NOT’ pairs. cRetaining only
bin pairs with genomic distance between 5 Kb and 1 Mb.

or comparable performance than those trained on HP
data (Supplementary Figure S15, see Supplementary
Data available online at https://academic.oup.com/bib).
Although worse performance is expected, the magnitude
of performance impairment is drastic. For example,
when enhancing by 8x (middle panel) within a distance
500 Kb–1 Mb, the Pearson correlation is 0.22–0.37 with
DeepHiC models trained on the downsampled Hi-C data,
compared with 0.50–0.67 with models trained on HP
data and 0.55–0.76 with models trained on full Hi-C
data. These results suggest that the DeepHiC method
is more sensitive to the sequencing depth of Hi-C data
than HiCNN2 and HiCPlus.

Model transferability
Although many HP datasets have been generated
recently [16–19], deeply sequenced HP datasets are only
available to limited cell types, making it infeasible to
train models separately for each cell type. One potential
solution is to use models pretrained on available datasets
from other cell type(s).

For enhancing the GM12878 HiChIP data, HiCPlus per-
formed similarly with either GM12878-trained or mESC-
trained models (the left panel of Figure 7; the left panels
of Supplementary Figures S16–S18, see Supplementary
Data available online at https://academic.oup.com/bib).
Comparatively, HiCNN2-1 and DeepHiC showed slightly
higher or higher accuracy using GM12878-trained models
than mESC-trained models (the middle and right panels
of Figure 7), with the difference more obvious for Deep-
HiC (the right panel of Figure 7).

For enhancing the mESC PLAC-seq data, the perfor-
mance of HiCPlus, HiCNN2 and DeepHiC using models
trained on the GM12878 HiChIP data was comparable
to or even slightly better than using models trained
on the mESC PLAC-seq data (Supplementary Figures
S19–S21, see Supplementary Data available online at

https://academic.oup.com/bib). Specifically, for HiCPlus
and HiCNN2-1, the two sets of models were nearly
indistinguishable in terms of enhancing the mESC PLAC-
seq data (left and middle panels of Supplementary
Figures S19–S21, see Supplementary Data available
online at https://academic.oup.com/bib). Interestingly,
DeepHiC achieved even slightly better performance
when using models trained on the GM12878 HiChIP
data (right panel of Supplementary Figures S19–S21,
see Supplementary Data available online at https://
academic.oup.com/bib). One plausible reason is that the
models for all three methods are originally developed
and fine-tuned for the GM12878 Hi-C data.

Encouraged by the promising transferability results
between mESC H3K4me3 PLAC-seq data and GM12878
Smc1a HiChIP data, we proceeded with transferability
assessment across more cell types. Since HiCNN2-1 and
HiCPlus achieved similarly best transferability perfor-
mance, we presented only HiCNN2-1 results for brevity.
Specifically, we enhanced 0.125 downsampled HP data
for each of the six cell types [namely, GM12878 and
mESC, and four human brain cell types (19]) including
RG, IPCs, excitatory neurons (eN) and interneurons (IN)]
using models trained from the corresponding cell type
as well as using models trained from each of the other
five cell types. For training and testing, we used the
same chromosome splitting as illustrated in Figure 1.
Results shown in Figure 8 and Supplementary Figures
S22 and S23 (see Supplementary Data available online at
https://academic.oup.com/bib) further support that the
models learned are transferable across cell types. Specif-
ically, Pearson correlation coefficients are almost indis-
tinguishable when enhanced with models trained from
the matching cell type or from other cell types (Figure 8
and Supplementary Figure S22, see Supplementary Data
available online at https://academic.oup.com/bib), and
all the models lead to similar performance in 3D peak
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Figure 7. Model transferability when enhancing GM12878 HiChIP data by 8×. Each subfigure compares two enhanced GM12878 HiChIP data: one using
models trained with GM12878 HiChIP data (Train_GM12878) and the other using models trained with mESC PLAC-seq data (Train_mESC). The evaluation
metric is Pearson correlation coefficient. Different colors in the subfigures represent different methods (yellow: HiCPlus, red: HiCNN2-1 and blue:
DeepHiC) while darker color represents models trained with mESC PLAC-seq and lighter color represents models trained with GM12878 HiChIP data. In
each subfigure, we show how the evaluation metric (y-axis) changes with genomic distance (x-axis), where the distance ranges from 20 Kb to 2Mb with
an increment of 10 Kb. The gray line represents the baseline (i.e. low-depth data without any enhancement).

calling (Supplementary Figure S23, see Supplementary
Data available online at https://academic.oup.com/bib).
For example, to detect chromatin interactions in IN, 0.125
downsampled PLAC-seq data (before any enhancement)
had essentially no power at all (sensitivity to detect IN
of IN-specific 3D peaks is 0.00, left most bars labeled
‘Baseline’ in Supplementary Figure S23C and G, see Sup-
plementary Data available online at https://academic.
oup.com/bib); in contrast, enhanced RG data using mod-
els trained with IN data resulted in a sensitivity of 0.49
(or 0.48) for IN (or IN-specific) 3D peaks (magenta bars
in Supplementary Figure S23C and G, see Supplemen-
tary Data available online at https://academic.oup.com/
bib); similarly and importantly, enhanced IN data using
models trained with data in any of the other five cell
types resulted in a comparable sensitivity of 0.47–0.59
(or 0.43–0.63) for IN (or IN-specific) 3D peaks (blue bars
in Supplementary Figure S23C and G, see Supplementary
Data available online at https://academic.oup.com/bib).

We further evaluated transferability in terms of cap-
turing cell type-specific features, examining gene expres-
sion and open chromatin status in the corresponding
cell types. Specifically, we compared the distribution of
gene expressions for three groups of genes: (i) genes
with 3D peak(s) looping to their promoters identified
at ‘baseline’ (low-depth data without enhancement); (ii)
genes without any 3D peaks at ‘baseline’ but with 3D

peak(s) after enhancement, separately for enhanced data
using models trained with each of the six cell types and
(iii) genes without any 3D peaks even with the full data
(‘background’). Not surprisingly, as shown in Supplemen-
tary Figure S24A–D (see Supplementary Data available
online at https://academic.oup.com/bib), ‘baseline’ iden-
tified only few lower hanging fruits, and thus expression
levels are the highest; genes with 3D peaks identified only
after enhancement [whether using models trained with
the matching cell type (yellow boxplots) or different cell
types (nonbaseline and nonbackground cyan boxplots)],
reassuringly, had only slightly lower expression levels,
drastically higher than those ‘background’ genes. Sim-
ilar patterns are observed when restricting only to cell
type-specifically expressed genes (Supplementary Fig-
ure S24E–H, see Supplementary Data available online at
https://academic.oup.com/bib). Following similar logic,
we assessed 3D peaks in terms of their overlap with cell
type-specific assay for transposase-accessible chromatin
using sequencing (ATAC-seq) peaks, observing similar
patterns (Supplementary Figure S24I–L, see Supplemen-
tary Data available online at https://academic.oup.com/
bib). In particular, models trained with matching cell
types (yellow bars) resulted in a similar proportion of
overlap with cell type-specific ATAC-seq peaks as those
trained with different cell types (nonbaseline and non-
background cyan bars), suggesting that models trained
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Figure 8. Model transferability when enhancing two neural cell types. All results are from HiCNN2-1 models. We test (i.e. perform enhancement) on
two cell types: IN (left subfigures A and C) and IPC (right subfigures B and D), with a downsampling ratio of 0.125. The enhancement models are trained
using HP data from each of the following six cell types: IN, IPC, RG, eN mESC or GM12878. The gray line represents the baseline (i.e. low-depth data
without any enhancement).

from unmatching cell types can similarly retain cell type-
specific features.

Finally, we explored model transferability across differ-
ent proteins of interest by cross-applying models learned
from H3K4me3 and CTCF PLAC-seq data in mESC. We
used the same mESC CTCF PLAC-seq data as in Juric
et al. [18]. We observed almost indistinguishable per-
formance when using models trained with the same
protein of interest or the other protein (Supplementary
Figure S25, see Supplementary Data available online at
https://academic.oup.com/bib), both visibly better than
without enhancement (i.e. baseline). These results sug-
gest that the enhancement models learned are likely
transferable also across different proteins of interest,
with the caveat that our assessments only involved three
different proteins: Smc1a above for GM12878, CTCF here
for mESC and H3K4me3. In the future, more high-depth
HP data with different proteins of interest will allow us to

perform a more comprehensive assessment across vari-
ous proteins.

Model robustness
Throughout the manuscript so far, we have used chro-
mosomes chr1, 3, 5, 7 and 9 as training; chromosome 2
as the validation (part of the training procedure to select
the best model); and the remaining chromosomes as
testing. In addition, when creating low-depth input data,
we performed downsampling only once. We evaluated
model robustness by swapping training and testing, by
using leaving-one-chromosome-out and by performing
downsampling five times. Results presented in Sup-
plementary Figures S26 and S27 (see Supplementary
Data available online at https://academic.oup.com/bib)
show that the models trained are robust, resulting in
highly similar Pearson correlation coefficient decay
profiles.
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Discussion
While several computational methods have been devel-
oped for enhancing the depth of Hi-C data, tools tailored
for HP data depth enhancement are still lacking. In this
study, we evaluated three methods (HiCPlus, HiCNN2 and
DeepHiC) developed for Hi-C data, when applying them
to enhance HP data. Our results showed that all three
methods performed similarly on enhancing HP datasets
when training on the HP data from the same cell type,
with HiCNN2 and HiCPlus outperforming DeepHiC in
most scenarios. We further assessed the robustness of
enhancement when models were trained with Hi-C or HP
data from the same cell type. We found that enhance-
ment using models trained on ultra-high-depth Hi-C data
achieved similar or even better performance than using
models trained on HP data. However, when the sequenc-
ing depth of Hi-C data and HP data used for training
were comparable, models trained on HP data exhibited
better performance than those trained on Hi-C data.
These results suggest that users can train models with
high-depth Hi-C data for HP data enhancement if similar
high-depth HP data are not available for training. We note
that the terminology ‘Hi-C data resolution enhancement’
prevails in the literature. We have, however, decided to
use ‘data depth enhancement’ to avoid ambiguity since
resolution is also commonly used to indicate the bin size
of the analysis unit.

Transferability across datasets (e.g. cell types, proteins
of interest) is important because in practice there are
limited cell types sequenced with HiChIP or PLAC-seq
techniques. Our analysis across six cell types, three pro-
teins of interest and two organisms, showed promising
transferability results for enhancing HP data, consis-
tent with the existing literatures [5–7] for enhancing Hi-
C data. For example, models trained using high-depth
GM12878 data can lead to better enhancement results in
mESC than models trained with mESC data. More eval-
uations are needed in the future to draw stronger con-
clusions. Such evaluations will become possible when
more high-depth HP data are generated both for train-
ing better models and for evaluations. Note that the
actual meaningful information, specifically where the
nonzero or zero contacts reside or where the chromatin
interactions locate, differs across cell types, organisms
and proteins of interest in HP dataset. The observed
promising transferability results suggest that the rules
learned to enhance lower depth data to higher depth
are shared across cell types (even across organisms).
Together, results presented under sections Hi-C or HP
data for training? and Model transferability suggest that
HiCNN2 or HiCPlus models pretrained from high-depth Hi-
C or HP data can be directly applied to enhance HP from
various cell types.

For performance evaluation, we used three standard
metrics, Pearson correlation coefficients, Spearman
correlation coefficients and Brownian distance covari-
ance [20]. Brownian distance covariance is a multivariate

dependence coefficient which measures dependency of
two random vectors of arbitrary and not necessarily
equal dimensions, providing more general quantification
of independence than linear correlation by Pearson
correlation [20]. In addition, similarity metrics tailored
for Hi-C data, such as HiCRep [26] and HiC-spector
[27] have been widely used. We have recently extended
HiCRep to HPrep, tailored for HP data after adjusting for
ChIP enrichment biases [21]. Applying HPrep to evaluate
the similarity between enhanced data and full data
led to findings consistent with what was revealed by
Pearson correlation: for example, the three deep learning
methods behave better than baseline and they all have
similar performance.

Overall, all three methods evaluated are able to gener-
ate enhanced data exceeding the baseline (i.e. low-depth
data without enhancement), both in terms of enhancing
the contact frequency matrix (as quantified by the corre-
lation metrics) and probably more importantly in terms
of improving power to detect chromatin interactions.
Among the three, we recommend HiCNN2 and HiCPlus,
both consistently exhibiting similar performance, supe-
rior to DeepHiC and VEHiCLE, when applied to enhance
HP data. Note that DeepHiC and VEHiCLE, both employ
the GAN model, which has been known to suffer from
mode collapse problem [22, 23]. Due to the nature of HP
data, multimodal distribution is expected because of the
systematic difference between AND and XOR bin pairs,
which might explain why DeepHiC and VEHiCLE per-
form suboptimally in HP data enhancement. Not surpris-
ingly, with increased downsampling ratio, enhanced data
from very shallow depth data showed more pronounced
improvement over the baseline. When the sequencing
depth is high, there is less room for improvement, par-
ticularly when using methods developed for Hi-C data
that do not consider ChIP enrichment bias of HP data.
For example, when we enhanced HP data on higher depth
data (e.g. 1/4 and 1/2 downsampled data), we found that
‘enhanced’ data from all three methods are comparable
or even slightly worse than the baseline when measured
by correlation metrics, while theoretically, enhancement
methods can still improve 1/4 and 1/2 data. In addi-
tion, we observed HP data enhanced using these meth-
ods show lower correlation than Hi-C data enhanced
by these methods. For example, the Pearson correlation
coefficients are in the range of 0.95–0.96 within 500 Kb
for HiCNN and HiCPlus on GM12878 1/8 ratio on chro-
mosomes 6 and 12 (Figure S3 in HiCNN paper [6]) but
enhanced HP data in our evaluations showed Pearson
correlation <0.81. Furthermore, the improvement in HP
data (as reflected by the correlation decay with dis-
tance figures) is not as smooth as in Hi-C data, which
might be caused by unbalanced read distribution due
to protein immunoprecipitation in HP data. Therefore,
methods developed for Hi-C data are not optimal for
HP data. Development of methods tailored to HP data is
warranted.
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Methods
Data preprocessing
All our assessed deep learning methods require training
data, testing data and validation data as input. In our
study, for the mESC PLAC-seq data, we assigned chromo-
somes 1, 3, 5, 7 and 9 as the training data, chromosome
2 as the validation data and chromosomes 4, 6, 8, 10–
19 as the testing data. For the GM12878 HiChIP data, we
assigned chromosomes 1, 3, 5, 7 and 9 as the training
data, chromosome 2 as the validation data and chromo-
somes 4, 6, 8, 10–22 as the testing data. Here, valida-
tion data was used to select the best model (details in
The principle of deep learning in Methods section). Both
mESC PLAC-seq data and GM12878 HiChIP data consist of
two parts: high-depth data and low-depth data, referring
to the original/full HP data without downsampling and
downsampled data, respectively. We used the low-depth
data as the input for each deep learning method, and the
high-depth data to calculate the loss function (details in
The principle of deep learning in Methods section).

Specifically, we applied the following steps to generate
low-depth data:

(i) Converting read pairs into bin pairs. We followed our
previous study [18, 21] to preprocess the HP data
to retain only long-range read pairs (intrachromo-
somal contacts >1 Kb). We then randomly selected
a subset of the read pairs with downsampling ratios
1/25, 1/16 or 1/8. Downsampling was implemented
using command ‘SAMtools views ratio’ [28]. Next,
we binned the original read pairs and downsampled
read pairs into 10 Kb bin pairs, resulting in high-
depth data and low-depth data, respectively.

(ii) Converting high-depth and low-depth bin pairs into
contact matrices. For each chromosome, based on
whether the bins containing the protein of interest
[H3K4me3 ChIP-seq peaks for mESC PLAC-seq data
(18) and Smc1a ChIP-seq peaks for GM12878 HiChIP
data (17)], we further grouped bin pairs into three
categories: the ‘AND’ set (bin pairs where both
bins contain the protein of interest), the ‘XOR’ set
(bin pairs where only one bin contains the protein
of interest) and the ‘NOT’ set (bin pairs where
neither bins contains the protein of interest). Since
HP technologies measure protein-mediated long-
range chromatin interactions, we only focused on
the ‘AND’ and ‘XOR’ sets for downstream analysis.
In addition, we filtered out bin pairs with either
end overlapping with the encyclopedia of DNA
elements (ENCODE) blacklist regions [29] or with
low mappability (mappability score < 0.9) [30]. After
filtering, we created a 10 Kb bin resolution contact
matrix for each chromosome. In this work, we only
used 10 Kb bin pairs with 1D genomic distance less
than 2Mb in our analysis.

(iii) Converting contact matrices into training data,
testing data and validation data. According to the
required format of each deep learning method,

we split the contact matrix for each chromosome
into multiple submatrices. Different deep learning
methods adopt different splitting strategies as
their default configuration. DeepHiC splits the
high-depth and low-depth contact matrices into
nonoverlapping 40 × 40 submatrices with stride size
40 × 40. In contrast, HiCNN, HiCNN2 and HiCPlus
partition the low-depth data with overlapping
40 × 40 submatrices with a stride size 34 × 34 (the
overlapping region between two consecutive subma-
trices is 6 × 40). Next, HiCNN, HiCNN2 and HiCPlus
partition the high-depth data into nonoverlapping
28 × 28 submatrices with stride size 28 × 28. The
overlapping submatrices split by HiCNN, HiCNN2
and HiCPlus imply that all inferred regions (i.e. the
34 × 34 core regions) have flanking information.
We applied each method with its default matrix
splitting strategy. With those submatrices, we
constructed three types of tensors: for training
data, testing data and validation data, respectively.
Here, training data is the tensor concatenating data
from five chromosomes (1, 3, 5, 7 and 9), validation
data is a tensor of chromosome 2, and testing data
contains data from chromosomes 4, 6, 8, 10–19 or
chromosomes 4, 6, 8, 10–22, for the mESC PLAC-seq
data or the GM12878 HiChIP data, respectively.

The principle of deep learning
All three deep learning methods (HiCNN2, HiCPlus and
DeepHiC) evaluated in this study are supervised learning
algorithms, which can be formulated as the following:

y = fθ(x), (1)

where x represents the low-depth data in the training
dataset (see Data preprocessing), y represents the
enhanced data and θ represents the parameters of
neural network f

( • )
, which approximates the map-

ping f : x→y by learning from the training dataset.
Each parameter θi

(
i = 1, 2, . . . , n

)
(with n being the

total number of parameters of the neural network)
can be optimized by the gradient descent algorithm
(e.g. stochastic gradient descent or Adam [31]) in
Equation (2)

θi = θi − r
∂

∂θi
J (θ) , (2)

where r is the learning rate, which controls the step
size of gradient descending, J

(
θ
)

is the predefined loss
function and ∂

∂θi
J
(
θ
)

is the gradient of θi which is calcu-

lated by backpropagation algorithm [10]. In HiCNN2 and
HiCPlus, J

(
θ
)

is the mean squared error as specified in
Equation (3)

J (θ) = 1
m

m∑

j=1

(
fθ

(
xj

) − yj
)2, (3)

where m is the sample size and it is the product of
batch size (hyperparameter), the width of the submatrix
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N and the height of the submatrix N; y = {
y1, y2, . . . , ym

}

is a batch of target data [high-depth submatrices, Data
preprocessing (3) in Methods section], yj ε R

N×N is the
high-depth matrix; xj ε R

N×N represents the low-depth
matrix; fθ

(
xj

)
ε RN×N is the enhanced matrix; fθ

( • )
is the

neural network which represents the mapping f of x to y
(f : x → y).

In HiCNN2 or HiCPlus, the training loss (represented
by Equation 3) is optimized by the gradient descent algo-
rithm (equation 2) iteratively. Each method trains the
network using multiple epochs, with the default being
500 and 40 000 for HiCNN2 and HiCPlus, respectively. One
epoch involves passing all batches completely through
the neural network. In each epoch, HiCNN2 or HiCPlus
uses validation loss to evaluate whether to retain the
current trained model or not. Specifically, the algorithm
calculates the validation loss between full data (viewed
as the target data) and the enhanced data using Equa-
tion 3 and updates to the current model only when the
validation loss decreases.

Generating HiC_downsampled data
In addition, we conducted additional experiments
for evaluation of transferability, where models were
trained on the mESC Hi-C data with comparable
sequencing depth as the mESC PLAC-seq data, which we
referred to as HiC_downsampled data. We generated the
HiC_downsampled data by downsampling read counts
within 2Mb genomic distance of mESC Hi-C data to 59.2
million, matching the total number of reads (59.2 million)
in the ‘AND’ and ‘XOR’ sets of the corresponding mESC
PLAC-seq data (Table 1).

Data Availability
We downloaded GM12878 Smc1a HiChIP dataset [15],
H3K4me3 PLAC-seq dataset in mESCs [16] (GSE119663),
H3K4me3 PLAC-seq datasets for four human brain cell
types [19], mESC CTCF PLAC-seq data [18], GM12878
Hi-C dataset [4] and mESC Hi-C dataset [3]. We also
obtained ChIP-seq peaks for different cell lines (GM12878
Smc1a ChIP-seq peaks: https://www.encodeproject.org/
files/ENCFF686FLD/, mESC H3K4me3 ChIP-seq peaks:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSM3380558) as well as RNA-seq and ATAC-seq data for
the human brain cell types from [19].

Key Points

• We focused on computationally enhancing the sequenc-
ing depth of data derived from HiChIP and PLAC-seq
experiments.

• We evaluated three deep learning-based sequencing
depth enhancement methods developed for Hi-C data.

• We provided practical guidelines of method of choice,
type of training data to use and transferability across cell
lines.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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