
Received: September 9, 2023. Revised: January 31, 2024. Accepted: March 11, 2024
© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Human Molecular Genetics, 2024, Vol. 33, 16, 1429–1441

https://doi.org/10.1093/hmg/ddae050
Advance access publication date 15 May 2024

Original Article

Whole genome sequencing based analysis of
inflammation biomarkers in the Trans-Omics for
Precision Medicine (TOPMed) consortium
Min-Zhi Jiang 1,†, Sheila M. Gaynor 2,3,†, Xihao Li 1,4, Eric Van Buren2, Adrienne Stilp 5, Erin Buth5, Fei Fei Wang5,

Regina Manansala 6, Stephanie M. Gogarten 5, Zilin Li7, Linda M. Polfus 8, Shabnam Salimi9, Joshua C. Bis 10,

Nathan Pankratz 11, Lisa R. Yanek 12, Peter Durda13, Russell P. Tracy13, Stephen S. Rich14, Jerome I. Rotter 15,

Braxton D. Mitchell 16, Joshua P. Lewis16, Bruce M. Psaty 10,17, Katherine A. Pratte18, Edwin K. Silverman19, Robert C. Kaplan20,

Christy Avery21, Kari E. North 21, Rasika A. Mathias22, Nauder Faraday 23, Honghuang Lin 24, Biqi Wang24, April P. Carson 25,

Arnita F. Norwood25, Richard A. Gibbs26, Charles Kooperberg 27, Jessica Lundin 27, Ulrike Peters27, Josée Dupuis 28,29,

Lifang Hou30, Myriam Fornage 31, Emelia J. Benjamin 32,33,34, Alexander P. Reiner35, Russell P. Bowler 18, Xihong Lin 2,

Paul L. Auer 36,†, Laura M. Raffield 1,† ,*, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed

Inflammation Working Group

1Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
2Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
3Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
4Department of Biostatistics, 135 Dauer Drive, 4115D McGavran-Greenberg Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
5Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
6Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating
Centre, University of Antwerp, Campus Drie Eiken - Building S; Universiteitsplein 1 2610 Antwerpen, Belgium
7School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, JL 130024, China
8Advanced Analytics, Ambry Genetics, 1 Enterprise, Aliso Viejo, CA 92656, United States
9Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD
21201, United States
10Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA 98195, United States
11Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, United States
12Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD 21287, United
States
13Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT 05446, United States
14Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, United States
15The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA
Medical Center, 1124 W. Carson Street, Torrance, CA 90502, United States
16Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD
21201, United States
17Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA 98101, United States
18Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, United States
19Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
20Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
21Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Chapel Hill, NC 27599, United States
22Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53,
Baltimore, MD 21287, United States
23Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21287, United States
24Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA 01655, United States
25Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS 39213, United States
26Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United
States
27Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
28Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
29Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States
30Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N Lake Shore Drive, Chicago, IL 60611, United States
31Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street,
Houston, TX 77030, United States
32Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, 72 East Newton
Street, Boston, MA 02118, United States
33Department of Epidemiology, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States
34Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study , 73 Mount Wayte Ave #2, Framingham, MA 01702, United States

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/33/16/1429/7673535 by guest on 18 O
ctober 2025

https://orcid.org/0000-0001-5502-063X
https://orcid.org/0000-0002-7869-5223
https://orcid.org/0000-0001-8151-0106
https://orcid.org/0000-0002-3910-0766
https://orcid.org/0000-0002-8202-1045
https://orcid.org/0000-0002-7231-9745
https://orcid.org/0000-0003-1123-2117
https://orcid.org/0000-0002-3409-1110
https://orcid.org/0000-0001-5958-693X
https://orcid.org/0000-0001-7117-1075
https://orcid.org/0000-0001-7191-1723
https://orcid.org/0000-0003-4920-4744
https://orcid.org/0000-0002-7278-2190
https://orcid.org/0000-0002-8903-0366
https://orcid.org/0000-0002-7397-9980
https://orcid.org/0000-0003-3043-3942
https://orcid.org/0000-0002-7970-6756
https://orcid.org/0000-0002-7986-8560
https://orcid.org/0000-0003-4892-6235
https://orcid.org/0000-0003-2871-3603
https://orcid.org/0000-0003-0677-8158
https://orcid.org/0000-0003-4076-2336
https://orcid.org/0000-0003-4651-363X
https://orcid.org/0000-0001-7067-7752
https://orcid.org/0000-0003-1735-8044
https://orcid.org/0000-0002-7892-193X


1430 | Jiang et al.

35Department of Epidemiology, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA 98105, United States
36Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226,
United States

*Corresponding author. 120 Mason Farm Road, 5042 Genetic Medicine Building, Chapel Hill NC 27599, United States. E-mail: laura_raffield@unc.edu
†Min-Zhi Jiang, Sheila M. Gaynor, Paul L. Auer and Laura M. Raffield contributed equally.

Abstract

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions.
Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To
evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed
a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the
Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was
n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits—E-selectin, intercellular adhesion molecule 1,
interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin—that remained significant after conditioning
on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations
by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based
associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and
genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses
when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms.
Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common
for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of
complex traits.

Keywords: inflammation biomarkers; whole genome sequencing data; rare variant aggregate test; genome-wide association studies;
Trans-Omics for Precision Medicine (TOPMed) consortium

Introduction
Chronic inflammation is a risk factor for many diseases includ-
ing cardiovascular disease, asthma, cancer and diabetes [1–3].
Chronic inflammation has been assessed in human cohorts using
a variety of immunoassay measured biomarker traits, particularly
markers of innate immune system activation such as C-reactive
protein (CRP) and interleukin 6 (IL-6) [2]. Though there is a strong
influence of social and environmental factors, previous analyses,
including genome-wide association studies (GWAS), have demon-
strated an underlying genetic component to variance in these
traits [4, 5]. Heritability of biomarkers of inflammation have been
estimated, for instance, to be 25%–60% [6, 7] for IL-6 and 30%–
45% [8–12] for CRP. However, most studies have only analyzed
relatively small and ancestrally homogenous (mostly European
ancestry) populations and as such have not fully elucidated the
genetic influence on these traits [4, 13–16].

The National Heart Lung and Blood Institute’s Trans-Omics
for Precision Medicine (TOPMed) initiative has now generated
whole genome sequencing data on > 150 000 individuals from
diverse population-based cohorts enriched for heart, lung, and
blood relevant disease traits. Novel ancestry-differentiated vari-
ant associations for CRP [17] (including confirmation of regulatory
impacts in vitro) and E-selectin [18] reported in earlier TOPMed
publications demonstrated the potential for genetic discovery for
inflammation traits in these diverse cohorts. Thus, analysis of
more biomarkers across a larger, more diverse set of samples with
the addition of rare variant aggregate tests may identify addi-
tional associated individual variants and genomic regions. Here,
we perform single variant and aggregate rare variant analyses
across 21 inflammation-related biomarkers, some of which are in
moderate to low correlation (Fig. S1), assessed in TOPMed cohort
studies (Table 1), including performing detailed conditional analy-
ses to identify distinct genetic association signals. Our results both
inform our understanding of inflammation trait biology and of
the expected findings for sequencing-based analyses of complex
traits, particularly protein quantitative biomarkers.

Results
Our analyses of 21 inflammation biomarkers, generally mea-
sured by ELISA, included 12 cohorts from the TOPMed Program
(Table S1, Table S2); phenotype availability and sample charac-
teristics varied by trait (Table S3). For example, for CRP as an
example trait, average age was 57.6, and the participants analyzed
were 64.8% female, 1.5% Asian, 22.9% non-Hispanic Black, 22.7%
Hispanic/Latino, 52.9% non-Hispanic White. By contrast, due to
different cohorts contributing, analysis of interleukin-6 included
70.9% non-Hispanic White participants. In brief, we performed
single variant analysis to identify trait-associated loci, followed
by stepwise conditional analysis to identify the total number of
statistically distinct signals. We also conditioned on previously
associated variants to identify distinct signals not identified in
prior papers. We performed genetic region and gene centric rare
variant set-based analyses for each trait and likewise conditioned
on previously identified signals.

Of the 21 traits tested, CRP, E-selectin, intercellular adhesion
molecule 1 (ICAM-1), interleukin 18 (IL-18), IL-6, lipoprotein-
associated phospholipase A2 (Lp-PLA2) activity and mass, mono-
cyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-
9 (MMP-9), P-selectin, and tumor necrosis factor α receptor 2
(TNFR2) had at least 1 genome-wide significant locus in single
variant analyses. Across these 11 traits there were a total of
30 genome-wide significant loci (P < 1.0 × 10−9 [21]) (Table S4,
Figs S2–S32), for which stepwise conditional analysis revealed
a total of 67 distinct signals (Table S5). After conditioning on
previously identified associations (Table S6), 22 conditionally
distinct variants across 8 loci remained locus-wide significant
for 6 traits (Table S7 and Table 2, Fig. 1, significance thresholds
listed in Table S7), and 1 trait (MMP-9) had a locus not reported
in the GWAS catalog (Table 2, Fig. 1). We focus on these 7 traits
with findings distinct from those already reported in the GWAS
catalog below.

In aggregate rare variant analyses, we detected 51 significant
gene-centric sets associated with 6 traits (Table S10A) and 214
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Table 1. Overview of 21 inflammation-related biomarkers. Mean and (standard deviation) are reported for quantitative values, total N
and % for dichotomous variables.

Trait (unit) N Age Female Measurement Cohorta

Cluster of Differentiation 40
(CD40) (ng/ml)

2381 60.4 (8.9) 1330 (55.9%) 0.59 (1.10) MESA, FHS

C-Reactive Protein (CRP)
(mg/l)

38 465 57.6 (15.6) 24 912 (64.8%) 0.70 (1.14) JHS, CARDIA, COPDGene, WHI,
SOL, CHS, CFS, ARIC, OOA,
GeneSTAR, MESA, FHS

E-selectin (ng/ml) 5489 64.5 (10.1) 4128 (75.2%) 3.46 (0.69) JHS, MESA, WHI, COPDGene
Intercellular Adhesion
Molecule 1 (ICAM-1) (ng/ml)

9268 50.5 (17.5) 5107 (55.1%) 5.42 (0.42) CARDIA, CHS, CFS, MESA, FHS

Interleukin-10 (IL-10) (pg/ml) 5533 60.1 (13.4) 3130 (56.6%) 1.28 (1.24) WHI, COPDGene, CFS,
GeneSTAR, MESA

Interleukin-18 (IL-18) (pg/ml) 2151 61.9 (8.6) 1153 (53.6%) 5.44 (0.40) FHS, COPDGene
Interleukin-1β (IL-1β) (pg/ml) 1638 55.4 (18.7) 1264 (77.2%) −0.02 (1.46) GeneSTAR, WHI, CFS
Interleukin-6 (IL-6) (pg/ml) 18 844 60.6 (14.1) 11 803 (62.6%) 0.63 (0.80) CARDIA, COPDGene, WHI,

CHS, CFS, GeneSTAR, MESA,
FHS

Interleukin-8 (IL-8) (pg/ml) 2826 65.9 (8.6) 1584 (56.1%) 2.44 (0.61) WHI, COPDGene
8-iso Prostaglandin F2α

(isoprostane-8-epi-pgf2α)
(pg/ml)

2778 50.4 (13.8) 1523 (54.8%) 6.73 (1.00) FHS

Lipoprotein-associated
phospholipase A2 (Lp-PLA2)
Activity (nmol/min/ml)

10 210 62.0 (13.2) 5611 (55.0%) 4.52 (0.70) FHS, MESA, CHS

Lipoprotein-associated
phospholipase A2 (Lp-PLA2)
Mass (ng/ml)

10 132 61.9 (13.3) 5566 (54.9%) 5.47 (0.38) FHS, MESA, CHS

Monocyte Chemoattractant
Protein-1 (MCP-1) (pg/ml)

3125 51.8 (13.9) 1700 (54.4%) 5.77 (0.32) FHS

Matrix Metalloproteinase-1
(MMP-1) (pg/ml)

737 63.5 (8.8) 348 (47.2%) 6.23 (0.91) COPDGene

Matrix metalloproteinase-9
(MMP-9) (ng/ml)

5191 56.4 (13.4) 3195 (61.5%) 8.55 (2.68) WHI, MESA, FHS, COPDGene

Myeloperoxidase (MPO)
(ng/ml)

1582 61.3 (8.6) 878 (55.5%) 3.68 (0.53) FHS

Osteoprotegerin (OPG)
(pmol/l)

3131 54.9 (16.3) 1699 (54.3%) 1.49 (0.34) FHS

P-selectin (ng/ml) 5032 55.7 (14.3) 2902 (57.7%) 3.60 (0.38) JHS, FHS
Tumor Necrosis Factor-α
Receptor 1 (TNFR1) (pg/ml)

3400 63.0 (9.5) 2157 (63.4%) 7.22 (0.30) WHI, MESA, COPDGene

Tumor Necrosis Factor-α
(TNF-α) (pg/ml)

7591 62.5 (12.5) 4738 (62.4%) 1.37 (1.09) COPDGene, WHI, CFS,
GeneSTAR, MESA, FHS

Tumor Necrosis Factor
Receptor 2 (TNFR2) (pg/ml)

3071 51.2 (13.9) 1672 (54.4%) 7.65 (0.27) FHS

aCohort studies involved in analysis. ARIC: Atherosclerosis Risk in Communities Study. CARDIA: Coronary Artery Risk Development in Young Adults Study.
CFS: Cleveland Family Study. CHS: Cardiovascular Health Study. COPDGene: Genetic epidemiology of COPD Study. FHS: Framingham Heart Study. GeneSTAR:
Genetic Study of Atherosclerosis Risk Study. JHS: Jackson Heart Study. MESA: Multi-Ethnic Study of Atherosclerosis Study. OOA: Old Order Amish Study. SOL:
The Hispanic Community Health Study/Study of Latinos. WHI: Women’s Health Initiative Study.

significant 2-kb sliding windows associated with 7 traits (Table
S11A). We observed 19 significant rare variant aggregate test
associations (some in overlapping or adjoining regions) after
conditioning on known variants from the GWAS catalog and
single-variant signals in the present analysis (Table 3), with
traits P-selectin, ICAM-1, CRP, Lp-PLA2 activity and mass, all
of which also had conditionally distinct single variant results
(Tables S10C and S11C). If possible, we attempted to replicate
distinct single variant findings using semiquantitative inflam-
mation biomarker measures (i.e. measures which do not give
an exact protein concentration in their results, for example in
mg/dl) from the SomaScan or Olink platforms in independent
samples (Table 4), as well as, for CRP, with rare variant testing in
UK Biobank. While not all rare variant signals could be replicated
due to lack of data availability, we note that all distinct rare

variant aggregation signals were in known regions, increasing
the plausibility of their association with inflammation traits.

C-reactive protein
We identified genetic variants associated with CRP consistent
with and expanding upon our previous analysis of CRP in 23 279
TOPMed participants [17]. All 8 distinct single variant signals
at the CRP locus previously known in TOPMed [17] (in partially
overlapping samples) were also found here. We identified 1 addi-
tional distinct signal, rare variant rs370370301 (TOPMed Effect
Allele Frequency (EAF): 0.2%, 1000G EUR EAF: 0.1%, 1000G SAS
EAF: 0.1%, and not available in all other populations in 1000G),
which was still significant after all conditional analyses. This
non-coding variant did not reach genome-wide significance in
the previous TOPMed analysis (P = 5.0 × 10−6) but was significant
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Figure 1. Single variant findings conditionally distinct from GWAS catalog variants. We report P-values for association for marginal and conditional
results, reference population effect allele frequencies (EAF) by continental ancestry group as defined by 1000 genomes project (1000G) [19]—African
(AFR), admixed American (AMR), East Asian (EAS), European (EUR), South Asian (SAS), as well as all participants in 1000G (ALL)—and the overall effect
allele frequency for all participants included in our TOPMed analyses, and annotation principal components (aPCs) from FAVOR [20]. NA means the
variant is not reported in the reference panel. We note that this information is available for all variants in close linkage disequilibrium with these lead
variants in Table S8.

(P = 1.4 × 10−11) in the present analysis. This increase in signifi-
cance is likely due to the larger number of participants, which
is now 38 465. This variant was not previously identified in an
analysis of CRP in UK Biobank (UKB) [22], likely due to the rare
frequency. Rare variant analysis yielded 1 significantly associated
gene-centric set of 54 missense rare variants (P = 3.6 × 10−22) on
CRP locus driven in part by rs77832441 (P = 7.8 × 10−16 for analysis
of individual variant in TOPMed) (Table S10B). We also tested a
similar gene-centric missense rare variant set for association in
UKB (P = 6.4 × 10−34 based on 116 variants, details in Table S15).
rs77832441 (MAC = 153, EAF = 0.2%) was previously identified in
Schick et al. [23] We note that rs77832441 was pruned from the
conditional analysis list based on linkage disequilibrium (LD) (see
Materials and Methods) but a variant in close LD, rs553202904
(r2 = 0.97), was included (Tables S6, S10C and S11C), and the
significance of the gene centric test was attenuated but still
significant (missense set, P = 1.3 × 10−8, Tables 3 and S10A) when
this signal was adjusted for, suggesting additional subthreshold
CRP missense variants in particular remain to be identified as
individually significant in larger analyses.

In addition to signals at the CRP locus, we also identified mul-
tiple loci in the single variant association analyses not previously
detected in prior TOPMed analysis, including 3 with multiple dis-
tinct signals (LEPR, SALL1, APOE) (Table S5). Each of these signals
were attenuated below the genome-wide significance threshold
after adjusting for known associations from the GWAS catalog and
other prior publications [17, 22].

E-selectin
There are 9 distinct signals at the SELL/SELE, FUT6, and ABO loci
associated with E-selectin, and 2 distinct signals remaining at

the ABO locus after conditioning on previously identified signals,
including single variant signals from previous TOPMed analysis.
This pair of signals, rs8176719 and rs374594061, were the sec-
ond and third distinct signals in our marginal analysis. Variant
rs8176719 is a frameshift insertion exonic variant common across
all populations that tags blood group O [28]. We do note that in our
prior work from TOPMed [18], while this was not captured as an
independent genome-wide signal, associations of differential E-
selectin levels across blood groups (with O treated as reference)
were also observed. This variant’s association with E-selectin
further illustrates the extensive pleiotropy of the ABO locus, which
has been previously associated with many diseases and traits. E-
selectin associated distinct variant rs374594061 is rare across all
populations (TOPMed EAF: 0.9%, and not available in 1000G) and,
likely as a consequence, has no previously reported associations in
the GWAS catalog and was also not tested in available replication
cohorts.

Intercellular adhesion molecule 1
For ICAM-1, we identified 9 distinct single variant signals at
the ICAM1 and ABO loci; 5 distinct signals at ICAM1 remained
(Table S7) after conditioning on known associations (Table S6). The
GWAS conditionally significant association at rs5491, the fourth
distinct signal in unconditional results at the ICAM1 locus, is an
exonic variant (TOPMed EAF: 4.5%, 1000G AFR EAF: 25.0%, 1000G
AMR EAF: 1.7%, 1000G EAS EAF: 5.3%, 1000G EUR EAF: 0.7%, 1000G
SAS EAF: 2.0%) that is low frequency in most populations but com-
mon among African ancestry populations. There are 4 other con-
ditionally distinct noncoding variants—rs11575071, rs139053442,
rs28382777, rs5030400—at the ICAM1 locus (Table 2); most have
low or rare frequency across all populations. As displayed in
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Table 3. Significant gene-centric and genetic region rare variant set analysis (after conditioning on known variants from the GWAS
catalog and single-variant signals in the present analysis).

Gene Centric Analysis

Trait CHR Symbol category # variants cMAC STAAR-O p-value

unconditional conditional cond2round

C-Reactive Protein (CRP) 1 CRP missense 54 336 3.6E-22 1.3E-08
Lipoprotein-associated
phospholipase A2 (Lp-PLA2) Activity

6 PLA2G7 pLOF 5 14 1.3E-13 1.1E-13 1.6E-06
6 PLA2G7 missense 56 323 6.4E-78 8.5E-28 3.9E-23

Lipoprotein-associated
phospholipase A2 (Lp-PLA2) Mass

6 PLA2G7 pLOF 5 13 1.7E-10 1.1E-10
6 PLA2G7 missense 55 326 1.8E-75 1.1E-18

Intercellular Adhesion Molecule 1
(ICAM-1)

19 ICAM1 missense 69 451 7.8E-15 5.0E-08 3.9E-05
19 ZNF653 enhancer 126 577 2.3E-11 2.3E-11 8.7E-01

Region-Based Analysis

Trait CHR pos_min pos_max # variants cMAC STAAR-O p-value

unconditional conditional cond2round

Lipoprotein-associated
phospholipase A2 (Lp-PLA2) Activity

6 46707812 46709811 103 526 2.2E-46 1.7E-20 9.1E-10
6 46708812 46710811 95 389 6.9E-74 1.3E-21 4.2E-11

Lipoprotein-associated
phospholipase A2 (Lp-PLA2) Mass

6 46707812 46709811 103 532 5.3E-44 9.3E-14
6 46708812 46710811 94 394 1.3E-64 2.0E-14

Intercellular Adhesion Molecule 1
(ICAM-1)

19 11282547 11284546 68 591 6.1E-12 4.5E-10 6.8E-01
19 11283547 11285546 91 892 7.7E-12 5.6E-10 9.7E-01
19 11284547 11286546 96 1337 1.8E-09 7.0E-09 6.5E-01
19 11285547 11287546 85 871 1.1E-09 1.8E-08 7.4E-01
19 11503547 11505546 119 729 2.8E-11 2.8E-11 8.3E-01
19 11504547 11506546 154 818 3.6E-11 3.6E-11 6.5E-01

P-selectin 1 169615464 169617463 65 433 7.5E-12 3.6E-12 4.8E-07
1 169616464 169618463 66 363 4.6E-12 5.1E-12 5.6E-07

Trait: trait name. CHR: chromosome where the gene is located. Symbol: gene symbols. Category: category of gene-based test; pLOF means putative loss of
function. pos_min: starting position of the region tested, hg38. pos_max: ending position of the region tested, hg38. # variants: number of variants tested in the
aggregate test. cMAC: cumulative minor allele count. STAAR-O P-value: P-values of aggregate tests in 3 cases. unconditional: P-value of unconditional analysis.
conditional: P-value of conditional analysis conditioning on (1) variants reported on previous literature (Table S6), (2) lead signals from our conditional single
variant association analysis. cond2round: P-value of second round of conditional analysis: conditional list for second round conditional analysis consists of 2
parts: (1) conditional list for the first round conditional analysis; (2) additionally, variants included in the aggregate test which had nominally significant
individual variant P-values (P < 1.0 × 10−6) (Tables S10A and S11A). Note that not all gene sets have such remaining significant variants, so we do not further
perform the second round conditional analysis in these cases, and leave the column blank.

Fig. S17, there is some long-range LD for variants identified in the
ICAM1 locus, notably for rs5491 (displayed in turquoise) in Fig. S17.

We also identified multiple conditionally significant rare vari-
ant set-based associations with ICAM-1 including 2 gene-centric
sets (Table S10A) and 6 2-kb sliding windows (Table S11A, indi-
vidual variants included in tests included in Table S11B), and 2
of them overlap the ICAM1 locus. We identify a set of missense
rare variants at ICAM1, whose most significant variant was the
identified rs139053442 association but which remains significant
after conditioning on rs139053442 and other single variant find-
ings from TOPMed and other studies (Table S6).

Matrix Metalloproteinase-9
We identified the MMP9 encoding gene for association with MMP-
9 levels in single variant analysis. This cis pQTL locus included
1 distinct signal at intronic variant rs3918249 that was common
in all populations, and it has repressed regulatory function with
high H3K27me3 score 48 according to FAVOR [20]. Our identified
variant rs3918249 (Fig. 1, TOPMed EAF 35.5%) is highly linked
(r2 = 0.938) with coding variant rs17576 (Table S8).

P-selectin
For P-selectin, we identified 5 distinct single variant signals at the
SELP locus (Table S5), and 3 of them remain significant (Table S7)
after conditioning on known associations (Table S6), and 1 distinct

single variant signal at the ABO locus that is significant condi-
tional on known associations (Tables S5 and S7). At the SELP locus,
2 of 3 conditionally significant signals are intronic (rs3917677,
rs3917825). rs3917825 is relatively conserved (top 9.1% genome-
wide aPC-conservation score) [20]. Both of these variants have
low frequency in AFR ancestry participants (1.7% for rs3917677
in 1000G, 2.8% for rs3917825 in 1000G) and are not observed in
EUR ancestry participants (from reference panels). The remaining
significant signal in the SELP locus is the synonymous variant
rs6128, which is more common in AFR ancestry (53.3%) than in
EUR ancestry (16.6%) participants from 1000G. Variant rs6128 is a
platelet splice QTL that alters SELP exon 14 skipping and soluble
versus transmembrane P-selectin protein production [33].

For aggregate tests of rare variants, lead signals were detected
at 2 consecutive 2-kb sliding windows in the SELP locus located
at chr1:169615464-169617463 and chr1:169616464-169618463
(Table S11A), which are driven in part by rs7529463. This
coding variant is highly conserved (top 1.6% genome-wide aPC-
conservation score), very rare (TOPMed AF 0.1%), and has high
aPC protein function scores (top 0.2% genome wide) [20].

At the ABO locus, the distinct signal (rs635634, which tags blood
group A) remained significant after conditioning on known vari-
ants (Table S6); however, the P-value is significantly attenuated
(from P = 1.0 × 10−55 to P = 2.0 × 10−15, Table S7) when adjusting
for known GWAS catalog variants.

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/33/16/1429/7673535 by guest on 18 O
ctober 2025

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data


TOPMed inflammation | 1435

Ta
b

le
4.

R
ep

li
ca

ti
on

of
n

ew
ly

id
en

ti
fi

ed
si

gn
al

s
in

p
re

vi
ou

s
se

m
iq

u
an

ti
ta

ti
ve

p
la

tf
or

m
p

Q
T

L
an

al
ys

is
.a

Tr
ai

t
Lo

cu
s

N
am

e

rs
ID

C
H

R
PO

S

(h
g3

8)

A
ll

el
e

T
O

PM
ed

_

B
et

a

T
O

PM
ed

_

p-
va

lu
e

Fo
lk

er
se

n
et

al
.(

20
20

),

PM
ID

:3
30

67
60

5

Pi
et

zn
er

et
al

.(
20

21
),

PM
ID

:3
46

48
35

4

S
u

n
et

al
.(

20
18

),

PM
ID

:2
98

75
48

8

Fe
rk

in
gs

ta
d

et
al

.(
20

21
),

PM
ID

:3
48

57
95

3

Z
h

an
g,

et
al

.(
20

22
),

PM
ID

:3
55

01
41

9b

Ef
fe

ct
O

th
er

B
et

a
p-

va
lu

e
B

et
a

p-
va

lu
e

B
et

a
p-

va
lu

e
B

et
a

p-
va

lu
e

B
et

a

(A
A

)

P-
va

lu
e

(A
A

)

B
et

a

(E
A

)

p-
va

lu
e

(E
A

)

E-
se

le
ct

in
A

BO
rs

81
76

71
9

9
13

3
25

7
52

1
T

C
T

−0
.2

38
4.

3E
-1

41
−0

.1
18

(+
)

9.
1E

-2
0

−0
.5

92
(+

)
0.

0E
+0

0

A
BO

rs
37

45
94

06
1

9
13

2
55

3
86

5
A

G
0.

71
0

2.
6E

-0
6

In
te

rc
el

lu
la

r
A

d
h

es
io

n

M
ol

ec
u

le
1

(I
C

A
M

-1
)

IC
A

M
1

rs
11

57
50

71
19

10
27

2
16

8
G

C
−0

.4
88

2.
3E

-4
5

IC
A

M
1

rs
54

91
19

10
27

4
86

4
T

A
−0

.1
41

2.
5E

-3
6

0.
35

3
(−

)
1.

0E
-2

0

IC
A

M
1

rs
13

90
53

44
2

19
10

28
3

72
0

C
G

−0
.5

42
9.

1E
-1

7
−0

.5
70

(+
)

5.
3E

-1
3

IC
A

M
1

rs
28

38
27

77
19

10
40

0
96

3
G

T
−0

.0
76

6.
6E

-0
4

−0
.4

52
(+

)
8.

6E
-1

1

IC
A

M
1

rs
50

30
40

0
19

10
28

5
12

0
T

C
0.

14
7

4.
7E

-0
7

1.
23

7
(+

)
4.

3E
-1

4
0.

99
3

(+
)

4.
3E

-9
4

In
te

rl
eu

k
in

-6
(I

L-
6)

IL
6R

rs
56

85
87

32
9

1
15

4
73

0
51

7
T

C
−0

.9
29

5.
4E

-0
6

Li
p

op
ro

te
in

-a
ss

oc
ia

te
d

p
h

os
p

h
ol

ip
as

e
A

2
(L

p
-P

LA
2)

A
ct

iv
it

y

PL
A

2G
7

rs
14

40
07

94
3

6
46

66
2

90
9

G
T

−0
.4

63
8.

0E
-3

4

PL
A

2G
7

rs
74

47
95

43
6

46
78

4
40

1
A

G
−0

.1
27

2.
3E

-2
2

PL
A

2G
7

rs
14

40
67

86
9

6
46

70
9

43
3

G
A

−0
.3

54
1.

7E
-1

0
−1

.4
39

(+
)

1.
4E

-2
8

PL
A

2G
7

rs
15

06
41

78
6

6
46

77
4

94
2

A
C

0.
04

5
3.

6E
-0

3

A
PO

E
rs

81
06

81
3

19
44

92
8

40
1

G
A

0.
00

9
4.

2E
-3

7
0.

25
3

(+
)

7.
0E

-1
12

Li
p

op
ro

te
in

-a
ss

oc
ia

te
d

p
h

os
p

h
ol

ip
as

e
A

2
(L

p
-P

LA
2)

M
as

s

PL
A

2G
7

rs
14

40
07

94
3

6
46

66
2

90
9

G
T

−0
.3

89
1.

2E
-0

2
0.

00
3

(+
)

7.
0E

-0
1

PL
A

2G
7

rs
74

47
95

43
6

46
78

4
40

1
A

G
−0

.0
83

9.
0E

-2
5

−1
.7

02
(+

)
6.

6E
-4

1

PL
A

2G
7

rs
14

40
67

86
9

6
46

70
9

43
3

G
A

−0
.3

88
2.

6E
-1

0
−0

.3
74

(+
)

3.
8E

-1
6

PL
A

2G
7

rs
73

47
11

40
6

46
64

1
93

9
C

T
−0

.1
71

5.
3E

-1
1

−1
.4

39
(+

)
1.

4E
-2

8

P-
se

le
ct

in
SE

LP
rs

61
28

1
16

9
59

3
66

6
T

C
−0

.0
54

3.
1E

-0
7

−1
.0

70
(+

)
2.

2E
-1

9

SE
LP

rs
39

17
82

5
1

16
9

59
5

32
0

G
A

−0
.1

88
2.

3E
-1

0
−0

.0
59

(+
)

5.
4E

-0
4

−0
.3

58
(+

)
1.

7E
-2

6
−0

.0
95

(+
)

2.
3E

-1
6

−0
.1

48
(+

)
4.

2E
-0

6
−0

.2
23

(+
)

4.
6E

-2
2

SE
LP

rs
39

17
67

7
1

16
9

62
2

97
0

C
A

−0
.3

06
3.

9E
-0

7
−0

.5
49

(+
)

1.
6E

-0
6

A
BO

rs
63

56
34

9
13

3
27

9
42

7
C

T
0.

16
3

4.
7E

-0
9

−0
.7

20
(+

)
1.

7E
-0

8

C
-R

ea
ct

iv
e

Pr
ot

ei
n

(C
R

P)
C

R
P

rs
37

03
70

30
1

1
15

9
71

2
22

8
A

G
−0

.6
25

1.
0E

-5
5

0.
44

7
(+

)
5.

1E
-4

6
0.

23
0

(+
)

4.
7E

-8
1

M
at

ri
x

m
et

al
lo

p
ro

te
in

as
e-

9

(M
M

P-
9)

M
M

P9
rs

39
18

24
9

20
46

00
9

49
7

C
T

0.
07

0
1.

4E
-1

1
−0

.5
05

(+
)

3.
6E

-0
4

a
FA

V
O

R
an

n
ot

at
io

n
of

ea
ch

va
ri

an
t

an
d

va
ri

an
ts

in
cl

os
e

LD
in

Ta
bl

e
S8

.b
N

ot
e

th
at

so
m

e
A

R
IC

p
ar

ti
ci

p
an

ts
ar

e
al

so
in

cl
u

d
ed

in
ou

r
an

al
ys

es
,s

o
Z

h
an

g
et

al
.(

20
22

)[
27

]c
an

n
ot

be
co

n
si

d
er

ed
a

tr
u

ly
in

d
ep

en
d

en
t

re
p

li
ca

ti
on

co
h

or
t.

T
h

e
(-

)a
n

d
(+

)n
ot

at
io

n
s

af
te

r
re

p
or

te
d

be
ta

va
lu

es
in

d
ic

at
e

if
re

su
lt

s
ar

e
d

ir
ec

ti
on

al
ly

co
n

co
rd

an
t

w
it

h
T

O
PM

ed
.

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/33/16/1429/7673535 by guest on 18 O
ctober 2025

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae050#supplementary-data


1436 | Jiang et al.

Interleukin 6
We identified the IL6R locus in the marginal single variant
analysis (lead variant rs61812598, P = 1.1 × 10−49, Table S5). After
conditioning on previous GWAS-identified variants (Table S6),
the lead variant was rs568587329 (Table S7) (P = 1.2 × 10−6, when
adjusted for known variants at the IL6R locus (GWAS catalog, [35]),
which met our locus-wide significance threshold. This variant
is rare in all populations (TOPMed EAF: 0.03%, 1000G AFR EAF:
0.4%, and not available in all other populations in 1000G) and has
a high aPC-Transcription-Factor score 17.29 (top 1.87% genome
wide) [20].

Lipoprotein-associated phospholipase A2 activity
and mass
For the Lp-PLA2 activity trait, we identified 11 distinct single
variant signals at the CELSR2, APOE, LDLR, and PLA2G7 loci
(Table S5). After conditioning on previous GWAS identified
variants (Table S6), 2 GWAS conditional distinct signals remain
at the APOE locus (Table S7), and 4 GWAS conditional distinct
signals remain at the PLA2G7 locus (Table S7).

At the APOE locus, the GWAS conditional distinct signals
rs429358 (representing the well-known APOE-ε4 allele) and
rs8106813 are the second and the third distinct signals of our
stepwise analysis.

We observe 4 low-frequency distinct signals, rs144007943,
rs74479543, rs144067869, and rs150641786, at the PLA2G7 locus
significant upon conditioning on prior GWAS identified signals. In
addition to these single variant associations, we observe 2 gene
centric and 2 2-kb sliding windows significantly associated at
the PLA2G7 locus. We observe a set of putative loss-of-function
(pLOF) rare variants and missense rare variants. The pLOF set is
partly driven by rs140020965, whereas the missense set is partly
driven by rs200303358 (though the set is still quite significant after
conditioning on this variant (P = 3.9 × 10−23) (Table S10A). We also
observe a 2-kb sliding window spanning chr6:46707812-46709811
and another 2-kb sliding window spanning chr6:46708812-
46710811 both partially driven by rs140020965 and rs200303358
(Table S11A).

For Lp-PLA2 mass, we identified 6 distinct signals at the PLA2G7
locus (Table S5). After conditioning on previous GWAS-identified
variants (Table S6), 4 signals remained significant (Table S7)—
rs144007943, rs74479543, rs144067869, and rs73471140—3 of
which were identified in our analysis of Lp-PLA2 activity,
unsurprisingly given the high correlation between the traits. The
additional signal at rs73471140 is rare across all populations and
in very low LD with all Lp-PLA2 activity lead variants (r2 < 0.01).
We again observe associations with pLOF rare variants and
missense rare variants at the PLA2G7 locus (Table S10A), and
the same 2 significant 2-kb sliding windows as Lp-PLA2 activity
(spanning chr6:46707812-46709811 and chr6:46708812-46710811)
are also significant.

Discussion
We sought to evaluate the genetic determinants of 21 inflamma-
tion biomarkers using data from the TOPMed Program. Previous
efforts in TOPMed with E-selectin [18] and CRP [17] demonstrated
that inclusion of diverse cohorts yielded further insights into
the genetic determinants of these biomarkers. Our work extends
these findings by incorporating both larger samples for these
previously analyzed traits and expanding the scope to include 19
additional traits and rare variant aggregate tests. We identified

significant associations with 6 traits in single variant analysis
and 5 traits in aggregate rare variant analysis that remained
significant after conditioning on known associations.

Our findings demonstrate the complementary value of per-
forming both single and rare variant analyses when analyzing
quantitative traits. Recent analyses of quantitative lipid traits
from TOPMed also combined single and rare variant analyses,
similarly finding both common signals and conditionally distinct
aggregate rare variant signals, mostly at known genes, for both
coding and noncoding variant sets [36], similar to our findings
here. Several exome sequencing efforts for diverse traits and
diseases, for example waist hip ratio [37] and schizophrenia [38],
have similarly identified joint impacts from common noncod-
ing variants and rare coding variants at the same loci (includ-
ing at Mendelian genes), but similar findings in the noncoding
space have been less widely reported. Previous analysis [17] of
CRP in TOPMed identified variants in enhancer regions (includ-
ing 1 whose impact on transcription and protein binding to the
enhancer region was validated in vitro) that were more common
in AFR versus EUR ancestry individuals, demonstrating the contri-
butions of ancestry differentiated variants in noncoding regions to
the genetic architecture of the trait. That analysis did not include
aggregate tests of rare variants, and in the present analysis we
observe that even after conditioning on known single variant
associations additional signals are identified by performing aggre-
gate analyses. This aggregate test replicated in UK Biobank. This
is concordant with prior reports of other subthreshold CRP asso-
ciated missense variants identified in the CARDIA study [26].We
identify a similar joint contribution of common, rare, and low
frequency variants for multiple traits, including P-selectin and
ICAM-1. We do note that in some cases our rare variant signals are
consecutive or overlapping, suggesting that multiple rare signals
within a broad region may contribute to gene regulation (Lp-PLA2
and ICAM-1). We note that it remains an outstanding challenge to
completely disentangle whether a common or rare variant signal
is driving biological processes, and continued large-scale analysis
will likely provide further insight.

Our analysis yielded more distinct signals than previously
detected for inflammation biomarkers, primarily at known loci.
This finding points to the extensive allelic heterogeneity at, in
particular, encoding gene loci, as reflected by the increased
number of statistically distinct cis pQTL [24] and cis eQTL [31]
distinct signals observed with increasing sample size. Studies
of populations with different ancestry often observe different
cis eQTL and pQTL signals due to ancestry differentiated allele
frequencies for such variants [39, 40], including our own analyses
of CRP within TOPMed [17]. Prior work suggested that such distinct
signals can have different molecular mechanisms (even acting
through distinct transcripts, as at the adiponectin encoding
gene locus [41]), with variants in different distinct signals
often impacting different regulatory regions (including distinct
enhancer and promoter regions). We anticipate that expanded
efforts to understand such “secondary” distinct signals at known
GWAS identified loci for quantitative traits in expanded sample
sizes will identify many additional loci with significant allelic
heterogeneity and ancestry differentiated QTLs. Such analyses
would be completed ideally with individual level data to avoid
issues with approximate conditional analysis with poor matching
between the LD reference panel and the GWAS or WGS analysis
population. Both individual level sequence data and improved
imputation reference panels [42–44] may help increase discovery
in the low frequency/rare variant space. We note that, where pos-
sible, we have attempted to replicate putative novel single variant
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findings using semi-quantitative proteomics platforms. For
variants tested in these external datasets, 16 out of 18 variants are
both significant and have effects in the same direction between
previous semi-quantitative pQTL analysis and our TOPMed anal-
ysis (Table 4). Such replication results are described in additional
detail in the supplemental material. We also replicate many
distinct signals from prior semiquantitative high throughput
platform publications in our own immunoassay-based findings—
for variants tested in both datasets, 217 out of 431 variants are
both significant (P < 0.05) and in the same direction between pre-
vious semi-quantitative pQTL analyses and our TOPMed analysis
(Table S13). Using CRP as an example trait, this includes 10 out of
11 available CRP lead signals from Ferkingstad et al. (2021) [26], 5
out of 5 CRP lead signals from Pietzner et al. (2021) [27], 2 out of
2 available CRP lead signals from Sun et al. (2018) [28], 4 out of 5
CRP lead signals from African American Atherosclerosis Risk in
Communities (ARIC) participants, and 5 out of 5 CRP lead signals
from European American ARIC participants from Zhang et al.
(2022) [29]. Note that some ARIC participants are also included in
our analyses, so this is not an independent replication sample for
Zhang et al. (2022) [29] findings. Similar look-ups were performed
for all other overlapping traits and are noted in Table S13.

One locus identified by our analysis, the cis region around
MMP-9 for its encoded protein, had not been reported in prior
GWAS for quantitative immunoassays. This variant, rs3918249,
was also identified by Ferkingstad et al. (2021) [26], Pietzner et al.
(2021) [27], and Sun et al. (2018) [28], but to our knowledge this is
the first report using a quantitative immunoassay. Our identified
variant rs3918249 is highly linked with a coding variant rs17576.
It is possible such a coding variant signal may tag an antibody
binding effect without true impact on protein abundance. How-
ever, we note that rs3918249 is also highly linked with rs6017721
(r2 = 0.86) and rs4810482 (r2 = 0.92), both of which are significant
conditionally distinct lead variants in GTEx V8 cis-eQTL results
for MMP-9 (Table S9). The finding suggests that this variant influ-
ences transcript and likely protein abundance, not just antibody
binding to the MMP-9 target protein. The MMP-9 coding variant
rs3918249 we identified is in moderate LD (r2 = 0.664) with the
intronic variant rs3918253. rs3918253 is associated with liver
enzyme levels; this close LD suggests MMP-9 abundance could
mediate this liver-related signal rs3918253 [34]. In contrast to
the supporting evidence for this signal at MMP-9, prior work has
found assay-binding artifacts for coding variants in ICAM1 [31];
similarly, the coding variant we identified at ICAM1 (rs5491) and
its LD proxies were not ICAM1 eQTLs in eQTLGen phase I [32] and
Genotype-Tissue Expression (GTEx) V8 [33] look-ups (as described
in Materials and Methods) and we suspect it may be an assay
interference effect.

Our analysis further highlights the value of including study
populations inclusive of multiple ancestry groups. Using a larger
sample size, we confirmed findings from previous TOPMed analy-
ses driven by variants common only in AFR reference populations
including rs3917422 and rs17855739 for E-selectin [18], as well
as rs11265259 and rs181704186 for CRP [17]. Given the diversity
of our sample, we were able to additionally identify associations
with Lp-PLA2 traits, P-selectin, and ICAM1 that were exclusively or
disproportionately observed in AFR reference populations (Fig. 1).
Many previous large-scale analyses have been conducted primar-
ily in European ancestry individuals.

Coding cis pQTLs present particular challenges for biomarker
traits. Such QTLs often have large effect sizes, but it is unclear
whether these effects represent a true impact on protein abun-
dance versus interference with antibody/aptamer binding. Such

issues have also been identified in previous work from TOPMed,
notably for the E-selectin signal rs3917422 identified by Polfus
et al. (2019) [18], as well as in prior genetic analyses for other
antibody measured biomarker traits [29, 45, 46]. As a supple-
mental analysis, we assessed coincidence of our identified coding
pQTL signals with distinct eQTL signals in GTEx V8 [31] and
eQTLGen phase I [30], and found that our MMP-9 coding variant
signal, but not the signal at ICAM-1, coincided with an eQTL.
When such coding pQTL variants also influence transcription, it
is less likely they are an aptamer or antibody effect. This should be
carefully evaluated in future pQTL efforts, using both quantitative
and semiquantitative platforms.

Our analysis provides significant novelty to the literature
in multiple ways. First, as noted in prior publications for high
throughput semiquantitative proteomic QTL findings [47–49], it is
important that such results be corroborated with quantitative
orthogonal assays, as done here. Our results also provide a
model for integrated single common and rare variant analysis
for quantitative traits, with a vital role for conditional analysis
on known variants, including common ones, in interpretation
of identified rare variant sets. Of our original 51 significant
gene-centric sets and 214 significant 2-kb sliding windows, only
19 significant rare variant aggregate test associations (some
in overlapping or adjoining regions) were still significant after
conditioning on nearby common variants. This highlights how
essential adjustment for common, mostly noncoding GWAS
identified-signals is, even in gene-centric or missense variant
only tests. Notably, our work demonstrates the significant
allelic heterogeneity, including continued discovery of additional
signals at known loci, for quantitative traits, with likely distinct
mechanisms as discussed in prior work for similar circulating
biomarkers [41]. This includes signals that are rare in EUR
populations, highlighting the important of diversity in genomic
analyses. Finally, our work provides a still fairly unusual
replication of an aggregate test rare variant signal, utilizing UK
Biobank data for CRP and strongly replicating a similarly filtered
missense variant set to the one identified here in TOPMed.

There are multiple limitations of our present analysis. While
the TOPMed program provides a rich sequencing data source,
there are a relatively limited set of cohorts within TOPMed that
have measured inflammation biomarkers in their participants.
Similarly, few other large scale studies have incorporated inflam-
mation biomarker measurement, and most of those have primar-
ily limited their measurements to CRP [22]. This limits our ability
to perform a well-powered analysis among some traits in TOPMed,
and to replicate all of our findings in external datasets. However,
along with the single variant replication discussed above, we also
replicate our significant CRP-associated rare variant set identified
in TOPMed using similar variant filters in UK Biobank sequencing
data (Table S15), with both single variant and aggregate test repli-
cation results supporting the validity of our results. Correlation
both between ELISAs themselves and between ELISA and aptamer
assays (as well as between Olink and SomaScan) varies, and
will impact expected replication rates [48, 50, 51]. However, such
information is unfortunately not available for the vast majority of
the specific immunoassays used here. We also note that many of
our biomarkers are still mostly measured in non-Hispanic White
participants; future efforts should focus on further increasing the
inclusion of additional populations.

Through our analysis of 21 inflammation biomarkers, we iden-
tified additional signals and highlighted features of such large-
scale analyses. Across this set of traits, consistently observed
features included a combination of contributing common and
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rare variant signal, extensive allelic heterogeneity, and ances-
try specificity of some identified variants. Such features have
been observed in other efforts, such as the analysis of lipids and
blood cell traits in the TOPMed program [52]. We anticipate that
with continually increasing sample sizes (and thereby statistical
power) that these key aspects of our study would be observed in
similar sequencing-based analyses of complex traits.

Materials and methods
Whole genome sequencing
We analyzed variants with whole genome sequencing from blood
in samples from the NHLBI TOPMed program. All participants had
deep coverage sequencing, with harmonization, variant discovery,
and genotype calling previously described [52]. We specifically
leveraged data from Freeze 8, which was aligned to GRCh38
reads [53]. All positions in this manuscript are reported based
on GRCh38. Samples were processed by the TOPMed Data Coor-
dinating Center, resulting in 1.02B variants for 138 K samples.
For all Freeze 8 samples, population principal components of
genetic ancestry were calculated using PC-AiR [54], genetic relat-
edness was calculated using PC-Relate [55], and race/ethnicity
was reported by each study (mostly from participant self-report).
No individuals were removed based on genetic ancestry cluster
from these race/ethnicity groupings. Full single variant and aggre-
gate test summary statistics will be provided at time of publi-
cation to the TOPMed genomic summary result dbGaP accession
(phs001974).

Phenotype harmonization and study sample
Phenotype harmonization for 21 inflammation biomarkers was
primarily performed by the TOPMed Data Coordinating Center
[56] as previously described. COPDGene, GeneSTAR, and WHI
were harmonized directly from study-provided data. Methods of
inflammation biomarker measurement are listed in Table S1.
We note that not all cohorts used the same platform, and sam-
ples run on multiple platforms are not available for assay re-
calibration. This is unfortunately a common limitation for cross-
cohort analyses of inflammation biomarker traits. Study par-
ticipants were included based on informed consent restrictions
(excluding some individuals with consent for only disease spe-
cific analyses), duplicates were removed to retain observations
with the highest frequency assay type where applicable, trait
measurements exceeding 3 standard deviations from the mean
were removed, and individuals with missing data were excluded.
CRP was natural log-transformed to address non-normality in
distribution. All traits were analyzed after rank-based inverse
normal transformation, performed by study-race/ethnicity strata,
with variance rescaled within each strata. The present analysis
of inflammation biomarkers included sample sizes ranging from
737–38 465 individuals from 12 cohorts in Freeze 8 of the NHLBI
TOPMed program. Across all traits, the sample is primarily non-
Hispanic White, though efforts were made to include a multi-
ethnic population wherever possible. The sample is described in
Tables S1 and S3.

Single variant analysis
We performed single variant analyses across ancestry groups
as was done in several previous studies in TOPMed [17, 57–
60]. We tested PASS variants (based on support vector machine
variant classifier, as previously described in TOPMed sequencing
methods [52] with a minor allele count (MAC) of at least 10 in

our pooled sample, resulting in a test of between 11 793 614–
57 072 499 variants for each biomarker trait. We used linear mixed
effects models [61] as implemented in GENetic Estimation and
Inference in Structured samples (GENESIS 2.19.1 [62]) on the
BioData Catalyst Seven Bridges platform [63], adjusting for age,
sex, variables combining study and race and ethnicity, an empir-
ical kinship matrix for relatedness and population structure, 11
ancestry principal components [54, 55] and permitting heteroge-
neous variance across the strata of the combination of study and
race and ethnicity. Differences in ancestry were accounted for by
our principal components and kinship matrix adjustment, and
we also adjusted for race/ethnicity as a self or study reported
variable, given previously reported impacts of these social con-
structs on levels of inflammatory biomarkers [64, 65]. All efforts to
examine whether identified genetic variants differed in frequency
by genetic ancestry or similarity cluster used public resources
such as 1000 Genomes, and did not use these study- or self-
reported race/ethnicity labels within TOPMed results. Loci were
defined as statistically significant according to a genome-wide
threshold given as 1 × 10−9 [21].

We next performed stepwise conditional analysis at signifi-
cant loci to identify the total number of conditionally distinct
signals within a +/− 1 Mb (+/− 3 Mb for ICAM1 chr19) window.
Conditional analysis was performed by running the association
analysis conditioning on the lead variant defined by P-value,
and repeating this process until no variants were significant
at the locus. Significance was defined at alpha = 0.05 using a
Bonferroni correction for the number of variants tested within
the locus, for example 0.05/39488 = 1.3 × 10−6 for CRP at the CRP
locus. The threshold for conditional analysis of each trait con-
ditioning on distinct signals and known variants are listed in
Tables S5 and S7.

Identification of distinct signals through
conditional analysis
Many previous studies of inflammatory biomarkers have
identified genome-wide significant signals for the inflammation
biomarkers tested here (Table S6). To identify which single variant
signals in our analysis were distinct from previously identified
GWAS variants, we performed stepwise conditional analysis
at significant loci for each trait, conditioning on the reported
associations from the GWAS Catalog, Raffield et al. (2020) [17],
Sinnott-Armstrong et al. (2021) [22], Ahluwalia et al. (2021) [35],
Folkersen et al. (2017) [66], and Polfus et al. (2019) [18] as covariates
in our null model to determine which associations in our TOPMed
analysis are distinct from those previously identified. We mapped
published associations within a +/− 1 Mb window (+/− 3 Mb
window for ICAM1 chr19 due to very long range LD) of the TOPMed
identified loci (i.e. GWAS conditional distinct signals at Table S7)
to TOPMed Freeze 8 variants by positions and alleles. To avoid
collinearity, we pruned the previous GWAS identified variant set
with the linkage disequilibrium threshold r2 = 0.9 to obtain a list
of previously identified distinct signals at each locus. All known
variants were included as fixed effects in the null model. If any
variants were still significant using a locus-wide threshold after
this adjustment for known variants, we proceeded to perform
stepwise conditional analysis again, to identify the total number
of distinct signals after adjustment for known variants from
prior GWAS.

Rare variant analysis
We performed rare variant analysis for both gene-centric and
genetic region aggregation units. We tested PASS variants with
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MAC at least 1 and minor allele frequency (MAF) less than 1.0%
in our pooled sample. We used linear mixed effects models
with weighting by functional annotation as implemented in
STAAR [67–69], adjusting for age, sex, race/ethnicity-study, and
11 population ancestry principal components and permitting
heterogeneous variance across race-study strata and empirical
kinship for relatedness and population structure. Gene-centric
units were defined for all protein-coding genes using coding
annotations based on GENCODE consequences as (a) putative
loss of function (stop gain, stop loss, splicing), (b) missense, and
(c) synonymous variants; non-coding variants were captured
via masks characterized by (a) promoters if within +/− 3 kb
of a transcription start site overlayed with DHS signal, or (b)
enhancers if identified by GeneHancer overlayed with DHS signal.
Genetic region analysis used 2-kb sliding windows with a 1 kb
skip length.

The STAAR-O P-value, incorporating 2 weighting schemes using
the beta distribution based on MAF (with α1 = 1, α2 = 25 to
upweight rarer variants or with α1 = α2 = 1 treat all equally)
in addition to annotation-based weights using CADD, LINSIGHT,
FATHMM-XF, aPC-Protein-Function, aPC-Conservation, aPC-
Epigenetics-Active, aPC-Epigenetics-Repressed, aPC-Epigenetics-
Transcription, aPC-Local-Nucleotide-Diversity, aPC-Mutation-
Density, aPC-Transcription-Factor, aPC-Mappability, aPC-Proximity-
To-TSS-TES, was considered. Sets were defined as statistically
significant according to a Bonferroni-corrected significance
threshold separately for gene-centric, correcting for all 5 masks,
and genetic region analysis, correcting for all windows (Table S12).
We performed conditional analysis to identify signals by obtaining
trait-specific associations from the GWAS catalog and the single-
variant analysis in a 1 Mb window from the start and end of the
positions spanned by the set.

Annotation
We used multiple resources to obtain functional annotations for
inclusion in the rare variant analysis and to describe identi-
fied variants, including FAVOR, GTEx, and ANNOVAR. We obtain
aPCs from FAVOR [20, 67], providing summarized functional cat-
egories by aggregating correlated individual functional annota-
tions. These aPCs provide variant-level measures as a PHRED
score yielding the interpretation that scores greater than 10 within
a given functional category are in the top 10% for all TOPMed
variants.

Replication
Many genetic loci and distinct signals have been identified in pre-
vious pQTL studies using untargeted semiquantitative platforms
(SomaScan and Olink) [24–27, 70]. For our conditionally distinct
signals (GWAS conditional distinct signals at known loci, and
rs3918249 for MMP-9), we pulled results from summary statistics
of these prior published studies and compared their direction
of effect and level of significance with our findings in TOPMed
(Table 4). Conversely, we also attempted to replicate all previously
reported distinct pQTL signals for overlapping traits in our sum-
mary statistics (Table S13).

For the CRP phenotype, we replicated our results using 188 912
samples with whole genome sequencing data from UKB [43, 71].
The null model was constructed using the same methods as the
TOPMed analyses, and both single variant and variant set analy-
ses were conducted using STAARPipeline app (https://github.com/
xihaoli/staarpipeline-rap) [67, 68] on the UKB Research Analysis
Platform (RAP).

eQTL coincidence
We also checked the coincidence of eQTL signals from cis-
eQTLGen phase I [30] and GTEx V8 [31] for the distinct signals we
detected on the corresponding coding region of the inflammation
biomarker traits. For cis-eQTLGen, we performed GCTA-COJO [72]
on the summary-based Mendelian randomization [73] formatted
cis-eQTLGen results to identify statistically distinct lead signals.
For GTEx V8 [31], conditionally distinct signals were already
reported (details in Table S9).
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