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Summary

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation soft-
ware to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-fre-
quency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages addi-
tional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq
to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele
frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome
sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive
cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with
the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost
every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R?, corresponding to 85-218 K variant gains. We
further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric
largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide signif-
icant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-
X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency
variants.

Genotype imputation has become an essential step for
genome-wide association studies (GWASs) and other
downstream genetic analyses. Post-imputation quality
control (QC) has always been performed to remove poorly
imputed genetic variants."™* In imputation settings with
no true genotypes available and thus no true imputation
quality (true R?), scientists have been relying on estimated
quality metrics given by imputation engines for QC pur-
poses. The most widely used estimated imputation quality
metric is Rsq, a standard output from MaCH and mimimac
series”® that is included in the default output from Mich-
igan and TOPMed imputation servers. However, Rsq per-

forms less well for uncommon variants with minor allele
frequency (MAF) <5% and will likely lead to information
loss and/or inclusion of noise.”'* We recently developed
MagicalRsq, which we showed to be a better metric
compared to the standard Rsq.'” However, MagicalRsq
only focused on within-cohort applications requiring addi-
tional genotypes (for example, whole-exome sequencing
[WES] or whole-genome sequencing [WGS] data) in at least
a subset of the imputation target samples. For practical pur-
poses, we need pre-trained models to accommodate argu-
ably the most common real-life scenario where the target
samples have only one set of genotype data available. In
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Figure 1. MagicalRsq-X overview

(A) Feature modification from the original
MagicalRsq model. We first removed the
estimated MAF feature derived from impu-
tation output, which we refer to as
MagicalRsq-X model vl. We then added
recombination rate from 1000G and long-
range LD scores (+ 1 Mb) of four continen-
tal populations from TOP-LD, leading to
MagicalRsq-X model v2. Finally, we added
short-range LD scores (= 100 Kb) of the
same four populations from TOP-LD, re-
sulting in MagicalRsq-X model v3, which
is the final model showing the best and
most robust performance.

Internal
cross-cohort
evaluation

: External cohort External evaluation
(' MagicalRsq-X ) &F:(fg@) withthe CFcohort  (B) Overview of study cohorts in our evalu-
: ations. We leveraged TOPMed WGS data of
c four studies, BioMe, MESA, JHS, and WHI,
. as our internal evaluation cohorts. We first
& :stcd:tac A T_h”:\ne_d WGS d:ta Imputation inferred local and global ancestry of indi-
TCTTCTA c A @ viduals in these studies and then selected
individuals who are primarily of European
ancestry or admixed African ancestry based
D on inferred global genetic similarity
External variant-level features (detailed in supplemental methods). We
Training cohort Imputed data SIS e En S also added the CF participants as an
BioMe EUR MagicalRsq-X Population-specific MAF external evaluatiqn cohort. .

WGS data N 7( Model } T (C) Data preparation for MagicalRsq-X ex-
[ Trus RE LD scores periments. We first thinned the WGS data
— to array genotype density and then per-
[EESTEem D formed genotype imputation, which out-
puts individual-level imputed data and
Rsq. We then calculated true R? comparing
Testing cohort Imputed data imputed data with WGS data for imputed
VESA EUR W Pre-trained markers (i.e., those in WGS but not

WGS data Rsq Magl::aLRlsq'x MagicalRsq-X included in the thinned dataset).
””” TR oce (D) Model training and evaluation using
****************** BioMe EUR for training and MESA
EUR for testing as an example. Starting

from BioMe EUR WGS data, we performed
imputation as demonstrated in (C). After

obtaining all the external variant-level features, which were further combined with true R? and Rsq, we trained MagicalRsq-X models.
For the testing cohort, MESA EUR in this example, we similarly performed data thinning and imputation. We then applied the models
pre-trained from BioMe EUR to calculate MagicalRsq-X for MESA EUR. In our experiments, we similarly calculated true R* in MESA EUR
and evaluated the performance of MagicalRsq-X compared to Rsq. The dashed square around “true R*” in testing set means it is not
required in real-life application and was used in our evaluation purpose.

this work, we proposed MagicalRsq-X, which modifies
some variant-level features from the original model. Specif-
ically, we removed estimated MAF and added linkage
disequilibrium (LD) scores from TOP-LD'® and recombina-
tion rate from 1000 Genomes Project (1000G)"'* (Figure 1A;
supplemental notes). MagicalRsq-X allows model training
from a completely different cohort (cross-cohort model
training), making it more broadly applicable in diverse
real-life scenarios. The design of MagicalRsq-X is for studies
without additional genotypes, and thus, borrowing infor-
mation from other studies is mostly needed. Because of
the design, MagicalRsq-X does not require additional geno-
types from the target cohort.

The original MagicalRsq model takes both imputation
summary statistics (Rsq, estimated MAF) and population
genetics statistics (ancestry-specific MAFE,'® S/HIC fea-
tures’®) as input, divides variants into three commonly
used MAF categories (common, MAF >5%; low frequency,
MAF 0.5%-5%; and rare, MAF <0.5%),"'? and trains an

XGBoost model'® separately in each MAF category. It re-
quires, among the imputation target samples, additional
genotypes (e.g., from a different genotyping platform or
WES or WGS) not used when performing the imputation.
In this work, MagicalRsq-X adopts the same framework
(Figures 1C and 1D) but modifies the variant-level features
to allow training models from a different cohort, i.e., cross-
cohort training (Figure 1A; supplemental notes). We
removed the estimated MAF feature (estimated from
imputed data) because this feature is susceptible to subtle
differences between training and testing cohorts, espe-
cially for rare variants where substantial discrepancies
may exist across cohorts (Figures S1 and S2). Note that
ancestry-specific MAFs from TOP-LD'® remain in the
model. We also added population-specific LD scores calcu-
lated based on TOP-LD'? at both 1-Mb and 100-kb win-
dows to reflect longer- and shorter-range LD patterns.
Moreover, we added the recombination rate from the
1000G'* as an additional feature (supplemental notes).
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We tested MagicalRsq-X models leveraging WGS data of
four studies from the Trans-Omics for Precision Medicine
(TOPMed) project. Specifically, we included participants
from BioMe Biobank (BioMe),'” the Multi-Ethnic Study
of Atherosclerosis (MESA),'® the Jackson Heart Study
(HS),'”?° and the Women’s Health Initiative (WHI)?' for
cross-validation. Based on genetic ancestry estimates
from RFMix** with combined 1000G and Human Genome
Diversity Project (HGDP) as reference, we selected individ-
uals with primarily European ancestry (EUR, estimated
European global ancestry >85%) or admixed individuals
with both European and African ancestry (estimated
European and African global ancestry both >10% and
summation >50%) (supplemental methods). For narrative
simplicity, we hereafter refer to these admixed individuals
as admixed African (AA), but we note that this grouping,
derived from estimated genetic ancestry, should not be
equated with self-identified population descriptors (such
as African American). With this genetic ancestry-based
grouping, we have three EUR cohorts and four AA cohorts
(Figure 1B; supplemental methods; Table S1). An example
of our MagicalRsq-X model training and testing framework
is illustrated in Figures 1C and 1D. We first thinned the
WGS data to mimic array genotypes and then performed
imputation separately for the four EUR cohorts with the
Haplotype Reference Consortium (HRC) reference panel
and for the three AA cohorts with the 1000G reference
panel (supplemental methods). After calculating true R?,
we trained MagicalRsq models separately for each cohort
and separately for variants in three MAF categories (com-
mon, low frequency, and rare). In our experiments, for
each MAF category, we randomly selected 10 K, 50 K, 100
K, 200 K, 500 K, and 1 M variants for model training,
with five repeats each to assess model stability. We then
performed cross-validation within EUR or AA to evaluate
MagicalRsq-X models (supplemental methods).

We first note that the modified features in MagicalRsq-X
both ranked high in feature importance (supplemental
notes; Figures S9 and S10) and improved model perfor-
mance (supplemental notes; Figures S3-S8). Similar to our
prior MagicalRsq study, we evaluated model performance
using two sets of metrics: the squared Pearson correlation,
root mean squared error (RMSE), and mean absolute
error (MAE) with true R? for direct comparison, as well as
counts of variant net gains for comparison of the ability
to perform post-imputation QC (supplemental methods).
Among the three EUR cohorts, our experiments
show that MagicalRsq-X outperforms Rsq for every pair
of training-testing datasets for almost all scenarios
(Figures 2A, S11, and S12; Tables S2 and S3). For example,
leveraging low-frequency variant models trained from
BioMe EUR, MagicalRsq-X improves squared Pearson corre-
lation with true R* by 4.8%-7.3% and 4.4%-6.9%, decreases
RMSE by 12.6%-20.9% and 18.2%-31.6%, and decreases
MAE by 5.4%-14.6% and 10.0%-24.0% for MESA EUR
and WHI EUR, respectively, compared to standard Rsq
(Table S2). For common variants where the original Rsq

already shows decent performance, MagicalRsq-X is still
more consistent with true R* than Rsq (Figure 2C).
MagicalRsq-X also shows advantages as a quality-filtering
metric to distinguish well-imputed variants from poorly
imputed ones. For instance, it leads to net gains of 16-24
K common, 45-68 K low-frequency, and 19-236 K rare var-
iants across five repeats compared to Rsq in the BioMe EUR
cohort (Table S3), leveraging models trained on the other
two EUR cohorts. Note that such net gains come from two
parts: saving truly well-imputed variants excluded by Rsq
and excluding truly poorly imputed variants included by
Rsq. Contributions of the two components depend on
whether Rsq overestimated or underestimated true R?,
which may vary depending on the target cohort. Further-
more, we notice that MagicalRsq-X trained with only 50 K
variants already shows rather stable results, consistent
with our previous observations.'? For models trained with
>50 K variants, the minimum net gains for MagicalRsq-X
in BioMe EUR are ~80 K for rare variants.

The performance of MagicalRsq-X for the AA cohorts is
similarly satisfying, leading to overall mean improvement
of 6.1%, 10.2%, and 8.3% in squared Pearson correlation,
20.3%, 18.7%, and 9.5% in RMSE, and 20.1%, 16.3%, and
5.5% in MAE, for common, low-frequency, and rare vari-
ants, respectively (Figures 2B, 2D, 2E, S13, and S14;
Tables S4 and S5). For a specific example, rare variants in
MESA AA could benefit from MagicalRsq-X trained on
BioMe AA, JHS, and WHI AA 50 K-1 M variant models by
7.8%-9.9%, 7.3%-9.5%, and 8.5%-10.9% in terms of
squared Pearson correlation with true R? (Table S4), corre-
sponding to 85-170 K, 119-204 K, and 99-218 K net gains
of variants (Table S5), respectively. MagicalRsq-X also shows
satisfying performance for common and low-frequency var-
iants (Figures S13 and S14), with the only exceptions be-
tween BioMe AA and JHS. We note that the genetic back-
ground of our defined AA cohorts is complicated, and the
difference between BioMe and JHS is the largest among all
the pairs (Figure S15). BioMe AA is the most genetically
diverse cohort, which is not surprising as it is a biobank-
based study from a diverse region of the U.S. (New York
City) with individuals born in locations across the globe,**
while JHS is the most homogeneous, likely due to its
geographical-centralized recruitment in Mississippi, with
substantially less recent migration from diverse geographic
regions. Such differential levels of genetic ancestry match-
ing between cohorts is likely a driving factor affecting
cross-cohort MagicalRsq-X performance. We then per-
formed experiments to include only individuals in BioMe
AA that could be reasonably matched with JHS samples
based on the harmonized principal components (PCs)
(n = 2,219) (supplemental methods) and observed marked
improvement (Figures S16-S21; Table S6; supplemental
notes). For example, applying models trained from JHS in-
dividuals to the whole BioMe AA set, MagicalRsq-X is infe-
rior to Rsq in terms of squared Pearson correlation by up
to 22.3% and 27.4% for common and low-frequency
variants, but it shows clear advantages over Rsq with
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A Performance of MagicalRsq—X compared to Rsq for EUR low frequency variants
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Figure 2. Cross-cohort MagicalRsq-X model performance
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(A) Performance across the three EUR cohorts (BioMeEUR, MESA EUR, and WHI EUR) for low-frequency variants (MAF [0.5%, 5%]). We
trained MagicalRsq-X models with randomly selected 10 K, 50 K, 100 K, 200 K, 500 K, and 1 M variants (x axis), each with five repeats.
y axis is the squared Pearson correlation between MagicalRsq-X and true R%. Each row represents a testing cohort, and each column rep-
resents a training cohort. The diagonal components are missing on purpose because we only assess cross-cohort model performance. Red
dashed lines represent squared Pearson correlation between standard Rsq and true R?, which serves as the benchmark.

(B) Performance across the four AA cohorts (BioMe AA, JHS, MESA AA, and WHI AA) for rare variants (MAF <0.5%).

(C-E) Comparison between true R? vs. Rsq and true R* vs. MagicalRsq-X for MESA EUR common variants (C), MESA AA low-frequency
variants (D), and MESA AA rare variants (E) on chr10, where MagicalRsq-X shown was calculated from models trained with 100K variants
from BioMe EUR (C) and WHI AA (D and E). For the smooth scatterplots, the darker the color, the larger the number of variants. Outliers
are plotted separately. Red lines are 45-degree lines, and blue lines are the fitted lines.

7.3%-8.7% and 12.9%-14.4% improvement in the subset
of matched individuals for common and low-frequency
variants, respectively (Figures S16 and S17; Table S6), sup-
porting our speculation that the aforementioned lower per-
formance is likely driven by substantial dissimilarity in the
distribution of genetic profiles in the two cohorts. To quan-
tify such cross-cohort dissimilarity, we developed a quanti-
tative metric to characterize how different a target cohort is
compared to a reference cohort based on harmonized PCs
(supplemental methods). We found that such a PC-based
metric could largely explain why we observed minimal
or no improvement for some MagicalRsq-X models,
where larger dissimilarity in PC metric would result in
worse MagicalRsq-X performance (Figures S22 and S23;
Table S7). Our proposed metric provides guidance regarding
the choice of MagicalRsq-X reference models. In practice,
we recommend users to be cautious when applying
MagicalRsq-X between cohorts with the PC-based dissimi-
larity metric >0.03 based on our evaluations.

We also tested our models on the cystic fibrosis (CF) sam-
ples of European ancestry”* as an external cohort to vali-
date the performance of MagicalRsq-X outside of the
TOPMed studies (supplemental methods). Our evaluations
resulted in similarly satisfying results (Table S8; Figures S24
and S25). For example, leveraging models trained from
WHI EUR cohorts with 100 K variants, MagicalRsq-X im-
proves squared Pearson correlation with true R? in CF
samples by 6.0%-6.4%, 6.4%-6.5%, and 6.2%-6.4% for
common, low-frequency, and rare variants, respectively.
The results further support the advantages of applying
MagicalRsq-X to external cohorts, suggesting the broad
practical utility of MagicalRsq-X.

Encouraged by the improved accuracy of MagicalRsq-X
as a post-imputation quality-filtering metric, we then per-
formed experiments to evaluate its benefits in down-
stream association analysis. We assembled known GWAS
significant variants for 15 blood cell traits from prior ana-
lyses using TOPMed WGS data,”*’ resulting in 8,321
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variants in total, including rare variants revealed from
burden tests. After overlapping with variants in the
imputed data, 3,251, 3,287, and 3,316 variants remained
in BioMe AA, WHI AA, and JHS, respectively. We calcu-
lated MagicalRsq-X for these variants separately in the
three cohorts with MagicalRsq-X models trained on
MESA AA and compared MagicalRsq-X and Rsq in terms
of squared Pearson correlation with true R* and the
net gains of variants under different thresholds (supple-
mental methods). Overall, MagicalRsq-X improved
squared correlation with true R? from 0.92 to 0.94 for
BioMe AA, from 0.89 to 0.92 for WHI AA, and from
0.89 to 0.91 for JHS, indicating better alignment with
true R% For filtering variants, we found MagicalRsq-X
achieved net gains of 9-53 variants for these associated
variants (which can be viewed as positive control associa-
tion signals) under commonly used thresholds (Table S9).
For example, 1s9273039 at HLA locus was found to be
significantly associated with hematocrit>> and was well
imputed in both JHS and MESA AA (true R* = 0.97 for
both cohorts), but the original Rsqs were only 0.45
and 0.44. In contrast, MagicalRsq-X could successfully
rescue this association signal with values of 0.88 for
both cohorts. These results again illustrate the advantages
of MagicalRsq-X over standard Rsq in downstream
analyses.

In summary, we present MagicalRsq-X, which signifi-
cantly extends our previously published MagicalRsq by al-
lowing cross-cohort applications without the need for
additional genotype data from the target cohort. Note
that the features we added (LD scores and recombination
rate) are highly influential to the model performance. We
additionally found that variants with low LD scores or
residing in regions with high recombination rate benefit
the most from MagicalRsq-X (Figures S26 and S27). Our
comprehensive experiments and evaluations demonstrate
the advantages of MagicalRsq-X as a quality-filtering
metric and its benefits in downstream analyses. Similar
to our original MagicalRsq, MagicalRsq-X is robust to
different choices of number of variants used for model
training where multiple repeats with different randomly
selected variants showed minimal variations. In addition,
MagicalRsq-X performs similarly well or even better in
some cases compared to MagicalRsq, especially for com-
mon and low-frequency variants (Figure S28), emphasizing
the value of this extension compared to MagicalRsq,
as in many real studies we do not have the luxury of per-
forming internal training with MagicalRsq. We release
our pre-trained models for the convenience of other re-
searchers but note that our pre-trained models were all
trained on U.S.-based cohorts due to data availability.
It warrants future investigations about whether these
U.S.-based models could also benefit other populations.
We encourage other investigators to train MagicalRsq-X
models whenever relevant data are available. MagicalRsq-
X software and our pre-trained models are freely available
at https://github.com/quansun98/MagicalRsgX.

Data and code availability

MagicalRsq-X is freely available at https://github.com/
quansun98/MagicalRsgX. Our pre-trained models could
also be downloaded at ftp://yunlianon:anon@rc-ns-ftp.
its.unc.edu/MagicalRsgX/models/ in addition to the
GitHub page.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2024.04.001.
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Web Resources

COVID-19 HGI Projected PC: https://github.com/covid19-
hg/pca_projection/tree/master
MagicalRsq: https://github.com/quansun98/MagicalRsq
MagicalRsq-X: https://github.com/quansun98/MagicalRsqX
Michigan imputation server: https://imputationserver.
sph.umich.edu/
TOP-LD: http://topld.genetics.unc.edu/
TOPMed: https://topmed.nhlbi.nih.gov/
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