nature computational science

Article

https://doi.org/10.1038/s43588-024-00764-8

A statistical framework for multi-traitrare
variant analysisinlarge-scale whole-genome

sequencing studies

Received: 12 November 2023

A list of authors and their affiliations appears at the end of the paper

Accepted: 20 December 2024

Published online: 7 February 2025

W Check for updates

Large-scale whole-genome sequencing (WGS) studies have improved

our understanding of the contributions of coding and noncoding rare
variants to complex human traits. Leveraging association effect sizes
across multiple traits in WGS rare variant association analysis can improve

statistical power over single-trait analysis, and also detect pleiotropic genes
and regions. Existing multi-trait methods have limited ability to perform
rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a
statistical framework and computationally scalable analytical pipeline

for functionally informed multi-trait rare variant analysis in large-scale
WGS studies. MultiSTAAR accounts for relatedness, population structure
and correlation among phenotypes by jointly analyzing multiple traits,
and further empowers rare variant association analysis by incorporating
multiple functional annotations. We applied MultiSTAAR to jointly analyze
threelipid traits in 61,838 multi-ethnic samples from the Trans-Omics for
Precision Medicine (TOPMed) Program. We discovered and replicated new
associations with lipid traits missed by single-trait analysis.

Advancesinnext-generation sequencing technologies and the decreas-
ing cost of whole-exome/whole-genome sequencing (WES/WGS) have
made it possible to study the genetic underpinnings of rare variants
(thatis, minor allele frequency (MAF) < 1%) in complex human traits.
Large nationwide consortiaand biobanks, such as the Trans-Omics for
Precision Medicine (TOPMed) Program’ of the National Heart, Lung
and Blood Institute (NHLBI), the National Human Genome Research
Institute’s Genome Sequencing Program (GSP), the National Institute
of Health’s All of Us Research Program? and the UK’s Biobank WGS
Program’, are expected to sequence more than a million individuals
in total, at more than one billion genetic variants in both coding and
noncoding regions of the human genome, while also recording thou-
sands of phenotypes. To mitigate the lack of power of single-variant
analyses to identify rare variant associations*, variant set tests have
been proposed to analyze the joint effects of multiple rare variants®~,
with most of the work focusing on single trait analysis.

Pleiotropy occurs when genetic variantsinfluence multiple traits™.
There is growing empirical evidence from genome-wide association

studies (GWASs) that many variants have pleiotropic effects™. Iden-
tifying these effects can provide valuable insights into the genetic
architecture of complex traits”. As such, it is of increasing interest to
identify pleiotropic rare variants by jointly analyzing multiple traitsin
WGS rare variant association studies (RVASs).

Several existing methods for multi-trait rare variant associa-
tion analysis, including MSKAT", Multi-SKAT" and MTAR'®, have
shown that leveraging the cross-phenotype correlation structure can
improve the power of multi-trait analyses compared to single-trait
analyses when analyzing pleiotropic genes' ™. However, existing
methods do not scale well, and are not feasible when analyzing
large-scale WGS studies with hundreds of millions of rare variantsin
samples exhibiting relatedness and population structure. Further-
more, none of the existing multi-trait rare variant analysis methods
leverage functional annotations that predict the biological function-
ality of variants, resulting in limited interpretability and power loss.
Although the STAAR method™ dynamically incorporates multiple
variant functional annotations to maximize the power of rare variant

e-mail: li@hsph.harvard.edu; zI2509@cumc.columbia.edu; xlin@hsph.harvard.edu

Nature Computational Science | Volume 5 | February 2025 [ 125-143

125


http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00764-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00764-8&domain=pdf
mailto:li@hsph.harvard.edu
mailto:zl2509@cumc.columbia.edu
mailto:xlin@hsph.harvard.edu

Article

https://doi.org/10.1038/s43588-024-00764-8

a
Individuals AEEis MultiSTAAR
” . B / -Burden
Traits = | Sparse H
x> 3 | genetic "
< g 2} > | relatedness £ B | = i
=2 2 = c we Bl | MultiSTAAR -
%) E 'r_g 2 matrix < h > _SKAT m=p  MultiSTAAR-O
= = s
ER >
=+ »
8 Ancestry | .
5 PCs MultiSTAAR
b4 -ACAT-V
b
Common variants Rare variants Analytical
Single variant analysis Variant set analysis follow-up
o
<
< g
==
% 8 « Phenotypes « Sparse GRM » Summarization
S g - Covariates « Ancestry PCs Gene.' Non'ge,ne' « Visualization
= - Genotypes « Annotated centric centric « Conditional

genotypes

Fig.1|/MultiSTAAR framework and pipeline. a, MultiSTAAR framework: (i) fit null
MLMMs using sparse GRM and ancestry PCs to account for population structure,
relatedness and the correlation between phenotypes; (ii) test for associations
between each variant set and multiple traits by dynamically incorporating
multiple variant functional annotations. b, MultiSTAAR pipeline: (i) prepare

the input data of MultiSTAAR, including genotypes, multiple phenotypes and

analysis analysis analysis

Each
variant set

\
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covariates; (ii) calculate sparse GRM, ancestry PCs and annotate all variants in
the genome; (iii) perform single-variant analysis for common and low-frequency
variants; (iv) define the rare variant analysis units, including gene-centric
analysis of five coding functional categories and eight noncoding functional
categories and non-gene-centric analysis of sliding windows; (v) provide result
summarization and perform analytical follow-up via conditional analysis.

associationtests, itis designed for single-trait analysis and cannot be
directly applied to multiple traits.

To overcome these limitations, we propose the ‘Multi-trait
variant-Set Test for Association using Annotation infoRmation” (Multi-
STAAR), a statistical framework for multi-trait rare variant analyses of
large-scale WGS studies and biobanks. It has several features. First, by
fitting a null multivariate linear mixed model (MLMM)" for multiple
quantitative traits simultaneously, adjusting for ancestry principal
components (PCs)?° and using a sparse genetic relatedness matrix
(GRM)?*2, MultiSTAAR scales well but also accounts for relatedness
and population structure, as well as correlations among the multiple
traits. Second, MultiSTAAR enables the incorporation of multiple vari-
ant functional annotations as weights to improve the power of RVASs.
Furthermore, we provide MultiSTAAR viaa comprehensive pipeline for
large-scale WGS studies that facilitates functionally informed multi-trait
analysis of both coding and noncoding rare variants. Third, MultiSTAAR
enables conditional multi-trait analysis to assess rare variant association
signals beyond known common and low-frequency variants.

In the current study we conducted extensive simulation studies
to demonstrate the validity of MultiSTAAR and to assess the power
gain of MultiSTAAR by incorporating multiple relevant variant func-
tional annotations, andits ability to preserve typel error rates. We then
applied MultiSTAAR to perform WGS RVAS of 61,838 ancestrally diverse
participants from NHLBI’'s TOPMed consortium by jointly analyzing
three circulating lipid traits.

Results

Overview of the methods

MultiSTAAR is a statistical framework and an analytic pipeline for
jointly analyzing multiple traits in large-scale WGS RVASs. There are
two main components in the MultiSTAAR framework: (1) fitting null
MLMMs using ancestry PCs and sparse GRMs to account for population
structure, relatedness and the correlation between phenotypes and
(2) testing for associations between each aggregated variant set and
multiple traits by dynamically incorporating multiple variant functional

annotations™ (Fig. 1a). Specifically, MultiSTAAR utilizes annotation PCs
to capture and prioritize the multidimensional biological functions of
variants. MultiSTAAR then integrates these annotation PCs with other
integrative functional scores and minor allele frequencies within the
MultiSTAAR test statistics using an omnibus weighting scheme.

InWGS RVASs, animportant but often underemphasized challenge
is selecting biologically meaningful and functionally interpretable
analysis units, especially for the noncoding genome*?**. In gene-centric
analyses of multiple traits, MultiSTAAR provides five functional catego-
ries (masks) to aggregate coding rare variants of each protein-coding
gene, as well as an additional eight masks of regulatory regions to
aggregate noncoding rare variants. In non-gene-centric analyses of
multiple traits, MultiSTAAR performs agnostic genetic-region analyses
using sliding windows™* (Fig. 1b).

For each rare variant set analyzed, MultiSTAAR first constructs
the multi-trait burden, SKAT and ACAT-V test statistics (Methods).
For each type of rare variant test, MultiSTAAR calculates multiple
candidate Pvalues using different variant functional annotations as
weights, following the STAAR framework'®. MultiSTAAR then aggre-
gates the association strength by combining the P values from all
annotations using the ACAT method, which provides robustness
to correlation between tests’, to obtain the functionally informed
multi-traitburden (MultiSTAAR-B), SKAT (MultiSTAAR-S) and ACAT-V
(MultiSTAAR-A) tests, and proposes an omnibus test, MultiSTAAR-O,
which leverages the advantages of the different types of test using
the ACAT method (Fig. 1a and Methods). Furthermore, MultiSTAAR
can test multi-trait rare variants’ associations conditional on a set of
known associations (Fig. 1b).

Simulation studies

To evaluate the type I error rates and the power of MultiSTAAR, we
performed simulation studies under several configurations. Following
the steps described in Data Simulation (Methods), we generated three
quantitative traits with a correlation matrix similar to the empirical
correlationin the three lipid traits** %, We then generated genotypes
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by simulating 20,000 sequences for 100 different 1-megabase (Mb)
regions, each of which was generated to mimic the linkage disequilib-
rium structure of an African American population by using the cali-
bration coalescent model®. Throughout the simulation studies, we
randomly and uniformly selected 5-kilobase (kb) regions from these
1-Mbregions and considered sample sizes of 10,000 for each replicate.
The simulation studies focused on aggregating uncommon variants
with MAF < 5%.

Typelerror rate evaluations

We performed 108 simulations to evaluate the typel error rates of the
multi-trait burden, SKAT, ACAT-V and MultiSTAAR-O testsata=10"*,
107and 107 (Supplementary Table 1). The results show that, for multi-
trait rare variant analysis, all four MultiSTAAR tests controlled the type
lerror rates at very close to nominal a levels.

Empirical power simulations

We next assessed the power of MultiSTAAR-O for the analysis of multiple
phenotypes under different genetic architectures, while also comparing
its power with existing methods. Specifically, we considered four mod-
els,inwhichvariantsinthe signal region (variant-phenotype association
regions) were associated with (1) one phenotype only, (2) two positively
correlated phenotypes, (3) two negatively correlated phenotypesand (4)
allthree phenotypes. Inaddition, we considered different proportions
(5%,15% and 35% on average) of causal variants in the signal region, where
the causality of variants depended on different sets of annotations,
and the effect size directions of causal variants were allowed to vary
(Methods). Power was evaluated as the proportions of Pvalues less than
a =107 based on 10* simulations. Overall, MultiSTAAR-O consistently
delivered higher power to detect signal regions compared to multi-trait
burden, SKAT and ACAT-V tests, through its incorporation of multiple
annotations (Supplementary Figs.1-32). This power advantage was also
robust to the existence of non-informative annotations.

Application to the TOPMed lipids WGS data
We applied MultiSTAAR to identify rare variant associations with three
quantitative lipid traits (low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C) and trigylcerides (TG))
through a multi-trait analysis using TOPMed Freeze 8 WGS data, com-
prising 61,838 individuals from 20 multi-ethnic studies (Supplemen-
tary Note). LDL-C values were adjusted for the usage of lipid-lowering
medication®**° (Methods), and DNA samples were sequenced at more
than 30x target coverage. Sample-and variant-level quality control (QC)
steps were performed for each participating study"***.
Race/ethnicity was measured using acombination of self-reported
race/ethnicity and study recruitment information® (Supplementary
Note). Of the 61,838 samples, 15,636 (25.3%) were Black or African

American, 27,439 (44.4%) were White, 4,461 (7.2%) were Asian or Asian
American, 13,138 (21.2%) were Hispanic/Latino American and 1,164
(1.9%) were Samoans. There were 414 million single-nucleotide vari-
ants (SNVs) observed overall, with 6.5 million (1.6%) common variants
(MAF >5%), 5.2 million (1.2%) low-frequency variants (1% < MAF < 5%)
and 402 million (97.2%) rare variants (MAF <1%). The study-specific
demographics and baseline characteristics are provided in Supple-
mentary Table 2.

Gene-centric multi-trait analysis of rare variants
We applied MultiSTAAR-O on the gene-centric multi-trait analysis of
coding and noncoding rare variants of genes with lipid traits in
TOPMed. For coding variants, rare variants (MAF <1%) from five
coding functional categories (masks) were aggregated, separately,
and analyzed using ajoint model for LDL-C, HDL-C and TG, including
(1) putative loss-of-function (stop gain, stop loss and splice) rare vari-
ants, (2) missense rare variants, (3) disruptive missense rare variants,
(4) putative loss-of-function and disruptive missense rare variants
and (5) synonymous rare variants of each protein-coding gene. The
putative loss-of-function, missense and synonymous rare variants
were defined by GENCODE variant effect predictor (VEP) categories™.
The disruptive missense variants were further defined by MetaSYM?*,
whichmeasures the deleteriousness of missense mutations. We incor-
porated nine annotation principal components (aPCs)'***?¢, CADD*,
LINSIGHT?, FATHMM-XF** and MetaSVM* (for missense rare variants
only) along with the two MAF-based weights* in MultiSTAAR-O (Sup-
plementary Table 3). The overall distribution of MultiSTAAR-O Pvalues
was well calibrated for the multi-trait analysis of coding rare variants
(Fig. 2b). AtaBonferroni-corrected significance threshold of a = 0.05/
(20,000 x 5) =5.00 x 107, accounting for five different coding masks
across protein-coding genes, MultiSTAAR-O identified 51 genome-wide
significant associations using unconditional multi-trait analysis (Fig. 2a
and Supplementary Table 4). After conditioning on previously reported
variants associated with LDL-C, HDL-C or TG located within a 1-Mb
broader region of each coding mask in the GWAS Catalog and Million
Veteran Program (MVP)***"*¢ 34 out of the 51associations remained sig-
nificant at the Bonferroni-corrected threshold of a = 0.05/51=9.80 x10™*
(Supplementary Table 5). We then performed replication analyses of
these 34 conditionally significant associations using the UK Biobank
WGS data 0f 170,104 individuals (Methods), and 32 were replicated with
aconditional P<9.80 x 10™*in UK Biobank (Supplementary Table 5).
For noncoding variants, rare variants from eight noncoding masks
were analyzed in a similar fashion: (1) promoter rare variants over-
laid with cap analysis of gene expression (CAGE) sites”, (2) promoter
rare variants overlaid with DNase hypersensitivity (DHS) sites*’, (3)
enhancer rare variants overlaid with CAGE sites***, (4) enhancer rare
variants overlaid with DHS sites***?, (5) untranslated region (UTR) rare

Fig. 2| Manhattan plots and Q-Q plots for unconditional gene-centric coding,
noncoding and ncRNA multi-trait analysis of LDL-C, HDL-C and TG using
TOPMed data (n=61,838). a, Manhattan plots for unconditional gene-centric
coding analysis of protein-coding genes. The horizontal red dotted line indicates
agenome-wide MultiSTAAR-O Pvalue threshold of 5.00 x 107, The significant
threshold is defined by multiple comparisons using the Bonferroni correction
(0.05/(20,000 x 5) = 5.00 x 107). Different symbols represent the MultiSTAAR-O
Pvalue of the protein-coding gene using different functional categories
(putative loss-of-function (pLoF), putative loss-of-function and disruptive
missense (pLoF + D), missense, disruptive missense, synonymous). b, Q-Q

plots for unconditional gene-centric coding analysis of protein-coding genes.
Different symbols represent the MultiSTAAR-O Pvalue of the gene using different
functional categories. The red solid line is a 45° reference line. ¢, Manhattan
plots for unconditional gene-centric noncoding analysis of protein-coding
genes. The horizontal red dotted line indicates agenome-wide MultiSTAAR-O
Pvalue threshold of 3.57 x 10 The significant threshold is defined by multiple
comparisons using the Bonferroni correction (0.05/20,000 x 7) =3.57 x107).

Different symbols represent the MultiSTAAR-O Pvalue of the protein-coding
gene using different functional categories (upstream, downstream, UTR,
promoter_CAGE, promoter_DHS, enhancer_CAGE, enhancer_DHS). Promoter_
CAGE and promoter_DHS are the promoters with overlap of CAGE sites and
DHSsites for a given gene, respectively. Enhancer_CAGE and enhancer_DHS are
the enhancers in GeneHancer-predicted regions with the overlap of CAGE sites
and DHS sites for a given gene, respectively. d, Q-Q plots for unconditional
gene-centric noncoding analysis of protein-coding genes. Different symbols
represent the MultiSTAAR-O Pvalue of the gene using different functional
categories. e, Manhattan plot for unconditional gene-centric noncoding analysis
of ncRNA genes. The horizontal line indicates agenome-wide MultiSTAAR-O
Pvalue threshold of 2.50 x 107°. The significant threshold is defined by multiple
comparisons using the Bonferroni correction (0.05/20,000 =2.50 x10°%).f, Q-Q
plot for unconditional gene-centric noncoding analysis of ncRNA genes.Ina, ¢
and e, the chromosome numbers are indicated by the colors of dots. Inall panels,
MultiSTAAR-Ois a two-sided test.
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variants, (6) upstream region rare variants, (7) downstreamregionrare
variants of each protein-coding gene and (8) rare variants in noncod-
ing RNA (ncRNA) genes?. The promoter rare variants were defined
as rare variants in the +3-kb window of transcription start sites with
the overlap of CAGE sites or DHS sites. The enhancer rare variants
were defined as rare variants in GeneHancer-predicted regions with

the overlap of CAGE sites or DHS sites. The UTR, upstream, down-
stream and ncRNA rare variants were defined by GENCODE VEP cat-
egories®. With awell-calibrated overall distribution of MultiSTAAR-O
Pvalues (Fig. 2d) and at a Bonferroni-corrected significance thresh-
old of a=0.05/(20,000 x 7) =3.57 x 107, accounting for seven differ-
ent noncoding masks across protein-coding genes, MultiSTAAR-O
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Table 1| TOPMed gene-centric noncoding multi-trait analysis results of both unconditional analysis and analysis conditional

on known lipids-associated variants

Gene Chr.® Category® Discovery (TOPMed)

Replication (UK Biobank) Variants® (adjusted)

MultiSTAAR-O? MultiSTAAR-O¢
(unconditional) (conditional)

No. of
SNVs®

MultiSTAAR-O?  MultiSTAAR-O*
(unconditional) (conditional)

No. of
SNVs°®

APOA1 Promoter 230 2.33x107 9.45x107

(CAGE)

316 8.86x107% 1.81x107%° rs509728, rs61905072,
rs66505542, rs7102314,
rs964184, rs75198898,
rs142958146, rs2075291,
rs3135506, rs651821,
rs45611741, rs662799,
rs10750097, rs9804646,
rs978880643, rs2070669,
rs76353203, rs138326449,
rs147210663, rs140621530,
rs525028, rs141469619,

rs188287950, rs202207736

CETP Promoter an 1.21x10™ 5.75x10™

(DHS)

533 6.65x107% 2.24x10™ rs35571500, rs247617,
rs17231506, rs34498052,
rs34119551, rs34065661,
rs1597000001f, rs7499892,
rs5883, rs289719, rs11860407,

rs189866004, rs5880

APOA1 Enhancer 642 1.88x107% 6.23x10™

(CAGE)

872 6.77x107% 1.21x10™® rs509728, rs61905072,
rs66505542, rs7102314,
rs964184, rs75198898,
rs142958146, rs2075291,
rs3135506, rs651821,
rs45611741, rs662799,
rs10750097, rs9804646,
rs978880643, rs2070669,
rs76353203, rs138326449,
rs147210663, rs140621530,
rs525028, rs141469619,

rs188287950, rs202207736

SPC24 Enhancer 366 1.33x10°® 4.88x10™

(CAGE)

536 6.73x10™ 2.61x107 rs140753491, rs138294113,
rs17242353, rs17242843,
rs10422256, rs72658860,
rs11669576, rs2738447,
rs72658867, rs2738464,
rs6511728, rs3760782,
rs59168178, rs2278426,

rs112942459

NIPSNAP3A Enhancer 767 2.63x10°® 8.46x107°

(DHS)

1.70x10™ 713x107® rs2150867, rs33918808,
rs112853430, rs4149307,
rs9282541, rs1883025,

rs1800978

1,031

LIPC Enhancer 4.26x10°® 1.25x10™

(DHS)

3714

5073 1.48x107® 9.04x10°® rs1973688, rs1601935,
rs2043082, rs10468017,
rs1532085, rs436965,
rs35980001, rs1800588,

rs2070895, rs113298164

RP11-310H4.2 7 ncRNA 154 1.69x107® 1.69x10°¢

NA NA NA NA®

MIR4497 12 ncRNA 23 1.37x10°® 1.42x107°

37 8.48x10™ 8.49x10™ rs5800864

RP11-15F12.3 18 ncRNA 64 753x10™" 750x107°

NA NA NA rs77960347, rs117623631,
rs9958734, rs7229562,
rs8086351, rs10048323,

rs8084172

A total of 61,838 samples from the TOPMed Program were considered in the analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O P<3.57x107 and conditional
MultiSTAAR-O P<6.58x10™* for seven different noncoding masks across protein-coding genes; unconditional MultiSTAAR-O P<2.50x107° and conditional MultiSTAAR-O P<8.33x107 for
ncRNA genes) are presented. MultiSTAAR-O is a two-sided test. NA, not available. *Chromosome number. °Functional category. °Number of rare variants (MAF <1%) of the particular noncoding
functional category in the gene. 9P value. °Adjusted variants in the conditional analysis. ‘Samoan-specific missense variant®. °No variant adjusted in the conditional analysis.

identified 76 genome-wide significant associations using unconditional
multi-trait analysis (Fig. 2c and Supplementary Table 6). After condi-
tioning on known lipids-associated variants®**"*%, six of the 76 associa-
tions remained significant at the Bonferroni-corrected threshold of
a=0.05/76 = 6.58 x10™*(Table1). Theseincluded promoter CAGE and
enhancer CAGE rare variants in APOAI, promoter DHS rare variantsin

CETP, enhancer CAGE rare variants in SPC24, and enhancer DHS rare
variantsin NIPSNAP3A and LIPC. All of these six conditionally significant
associations were replicated with a conditional P < 6.58 x 10 using
the UK Biobank WGS data (Table 1and Methods).

MultiSTAAR-O further identified six genome-wide signi-
ficant associations using unconditional multi-trait analysis at
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Fig. 3| TOPMed genetic-region (2-kb sliding window) unconditional multi-
trait analysis results for LDL-C, HDL-C and TG using TOPMed data (n = 61,838).
a, Manhattan plot showing the associations of 2.65 million 2-kb sliding windows
versus —log,,P of MultiSTAAR-O. The horizontal red dotted lineindicates a
genome-wide Pvalue threshold of 1.89 x 107%. b, Q-Q plot of 2-kb sliding window
MultiSTAAR-O Pvalues. ¢, Scatterplot of Pvalues for the 2-kb sliding windows

_10910PACAT7\/—MT

comparing MultiSTAAR-O with burden-MT, SKAT-MT and ACAT-V-MT tests (MT,
multi-trait). Each dot represents a sliding window, with the x-axis label being the
-log, P of the conventional multi-trait test and the y-axis label being the —log;,(P)
of MultiSTAAR-O. Burden-MT, SKAT-MT, ACAT-V-MT and MultiSTAAR-O are two-
sided tests. Int*, intergenic sliding window.
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a=0.05/20,000 =2.50 x 10*accounting for ncRNA genes (Fig. 2e and
Supplementary Table 6), with three rare variant associations in
RP11-15F12.3, RP11-310H4.2 and MIR4497 remaining significant at
a=0.05/6 = 8.33 x 102 after conditioning on known lipids-associated
variants®***® (Table 1). Among these three conditionally significant
associations, none was replicated with a conditional P<8.33 x107
using the UK Biobank WGS data (Table 1and Methods).

Notably, among the nine conditionally significant noncoding rare
variants associations with lipid traits, four were not detected by any
of the three single-trait analyses (LDL-C, HDL-C or TG) using uncon-
ditional analysis of STAAR-O, including the associations of enhancer
DHS rare variantsin N/IPSNAP3A and LIPC as well as ncRNA rare variants
in RP11-310H4.2 and MIR4497 (Supplementary Table 6). These results
demonstrate that MultiSTAAR-O has increased power over existing
methods, and identifies additional trait-associated signals by lever-
aging cross-phenotype correlations between multiple traits.

Genetic-region multi-trait analysis of rare variants

We next applied MultiSTAAR-O to perform genetic-region multi-trait
analysis toidentify rare variants associated with lipid traitsin TOPMed.
Rare variants residing in 2-kb sliding windows with a1-kb skip length
were aggregated and analyzed using a joint model for LDL-C, HDL-C
and TG. We incorporated 12 quantitative annotations, including

nine aPCs, CADD, LINSIGHT and FATHMM-XF, along with the two
MAF weights in MultiSTAAR-O (Methods). The overall distribution
of MultiSTAAR-O P values was well-calibrated for the multi-trait
analysis (Fig. 3b). At a Bonferroni-corrected significance threshold
of a=0.05/(2.65 x 10°) =1.89 x 1078 accounting for 2.65 million 2-kb
sliding windows across the genome, MultiSTAAR-O identified 502
genome-wide significant associations using unconditional multi-trait
analysis (Fig. 3a and Supplementary Table 7). By dynamically incor-
porating multiple functional annotations capturing different aspects
of variant function, MultiSTAAR-O detected more significant sliding
windows and showed consistently smaller P values for the top slid-
ing windows compared with multi-trait analysis using only MAFs as
the weight (Fig. 3¢). After conditioning on known lipids-associated
variants***"*%, seven of the 502 associations remained significant at the
Bonferroni-corrected threshold of & = 0.05/502 = 9.96 x 105 (Table 2).
Among these seven conditionally significant associations, six were
replicated with a conditional P <9.96 x 10~ using the UK Biobank
WGS data (Table 2 and Methods), including two sliding windows in
DOCK7 (chromosome 1, 62,651,447-62,653,446 bp; chromosome 1,
62,652,447-62,654,446 bp) and an intergenic sliding window (chro-
mosome1,145,530,447-145,532,446 bp) that were not detected by any
ofthethreesingle-trait analyses (LDL-C, HDL-C or TG) using STAAR-O
(Supplementary Table 7). Notably, all known lipids-associated variants
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Table 2 | TOPMed genetic-region (2-kb sliding window) multi-trait analysis results of both unconditional analysis and
analysis conditional on known lipid-associated variants

Chr.? Start
location®

End location®

Gene

Discovery (TOPMed)

Replication (UK Biobank)

No. of
SNVs?

MultiSTAAR-O°

MultiSTAAR-O°
(unconditional) (conditional)

No. of
SNVs!

MultiSTAAR-O°
(unconditional) (conditional)

MultiSTAAR-O°

Variantsf
(adjusted)

1 55,051,447

55,053,446

PCSK9

327

711x10™

6.60x10°®

458

1.90x107%

375x107

rs12117661,
rs2495491,
rs11591147,
rs67608943,
rs72646508,
rs693668,
rs28362261,
rs28362263,
rs141502002,
rs505151,
rs28362286

1 55,062,447

55,054,446

PCSK9

320

9.37x107°

9.07x107°

442

5.28x107%

4.01x10™

rs12117661,
rs2495491,
rs11591147,
rs67608943,
rs72646508,
rs693668,
rs28362261,
rs28362263,
rs141502002,
rs505151,
rs28362286

1 62,651,447

62,653,446

DOCK7

277

5.08x107°

7.56x107°

396

151x10™

774x107%

rs67461605

1 62,652,447

62,654,446

DOCK7

257

4.87x107°

7.24x107°

357

9.59x10™

4.93x107%

rs67461605

1 145,530,447

145,532,446

intergenic

233

5.12x107°

5.12x107°

386

4.54x107%

4.54x107%

NA®

19 11,104,367

11,106,366

LDLR

336

115x10™

8.33x10™

437

9.84x107°

211x10°°

rs140753491,
rs138294113,
rs172423583,
rs17242843,
rs10422256,
rs72658860,
rs11669576,
rs2738447,
rs72658867,
rs2738464,
rs6511728,
rs3760782,
rs59168178,
rs2278426,
rs112942459

19 11,105,367

11,107,366

LDLR

338

5.97x10™

5.55x107°

480

4.51x10™

2.54x107

rs140753491,
rs138294113,
rs17242353,
rs17242843,
rs10422256,
rs72658860,
rs11669576,
rs2738447,
rs72658867,
rs2738464,
rs6511728,
rs3760782,
rs59168178,
rs2278426,
rs112942459

A total of 61,838 samples from the TOPMed Program were considered in the analysis. Results for the conditionally significant sliding windows (unconditional MultiSTAAR-O P<1.89x107® and
conditional MultiSTAAR-O P<9.96x10°®) are presented. MultiSTAAR-O is a two-sided test. *Chromosome number. ®Start location of the 2-kb sliding window. °End location of the 2-kb sliding
window. ‘Number of rare variants (MAF <1%) in the 2-kb sliding window. °P value. ‘Adjusted variants in the conditional analysis. °No variant adjusted in the conditional analysis. Physical positions
of each window are on build NCBI GRCh38/UCSC hg38.

indexed in the previous literature were at least 1 Mb away from the
intergenic sliding window.

Comparison of MultiSTAAR-O with existing methods

Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis
of codingrare variants identified 34 conditionally significant associa-
tions with lipid traits (Supplementary Table 5), including NPCI1L1 and

SCARBI missense rare variants that were missed by multi-traitburden,
SKAT and ACAT-V tests (Supplementary Table 4). Among the nine and
seven conditionally significant associations detected in gene-centric
multi-trait analyses of noncoding rare variants and genetic-region
multi-trait analysis, MultiSTAAR-O identified one and two associa-
tions, respectively, that were missed by the multi-trait burden, SKAT
and ACAT-V tests (Supplementary Tables 6 and 7). These associations

Nature Computational Science | Volume 5 | February 2025 [ 125-143

131


http://www.nature.com/natcomputsci
https://www.ncbi.nlm.nih.gov/snp/?term=rs12117661
https://www.ncbi.nlm.nih.gov/snp/?term=rs2495491
https://www.ncbi.nlm.nih.gov/snp/?term=rs11591147
https://www.ncbi.nlm.nih.gov/snp/?term=rs67608943
https://www.ncbi.nlm.nih.gov/snp/?term=rs72646508
https://www.ncbi.nlm.nih.gov/snp/?term=rs693668
https://www.ncbi.nlm.nih.gov/snp/?term=rs28362261
https://www.ncbi.nlm.nih.gov/snp/?term=rs28362263
https://www.ncbi.nlm.nih.gov/snp/?term=rs505151
https://www.ncbi.nlm.nih.gov/snp/?term=rs28362286
https://www.ncbi.nlm.nih.gov/snp/?term=rs12117661
https://www.ncbi.nlm.nih.gov/snp/?term=rs2495491
https://www.ncbi.nlm.nih.gov/snp/?term=rs11591147
https://www.ncbi.nlm.nih.gov/snp/?term=rs67608943
https://www.ncbi.nlm.nih.gov/snp/?term=rs72646508
https://www.ncbi.nlm.nih.gov/snp/?term=rs693668
https://www.ncbi.nlm.nih.gov/snp/?term=rs28362261
https://www.ncbi.nlm.nih.gov/snp/?term=rs28362263
https://www.ncbi.nlm.nih.gov/snp/?term=rs505151
https://www.ncbi.nlm.nih.gov/snp/?term=rs28362286
https://www.ncbi.nlm.nih.gov/snp/?term=rs67461605
https://www.ncbi.nlm.nih.gov/snp/?term=rs67461605
https://www.ncbi.nlm.nih.gov/snp/?term=rs17242353
https://www.ncbi.nlm.nih.gov/snp/?term=rs17242843
https://www.ncbi.nlm.nih.gov/snp/?term=rs10422256
https://www.ncbi.nlm.nih.gov/snp/?term=rs72658860
https://www.ncbi.nlm.nih.gov/snp/?term=rs11669576
https://www.ncbi.nlm.nih.gov/snp/?term=rs2738447
https://www.ncbi.nlm.nih.gov/snp/?term=rs72658867
https://www.ncbi.nlm.nih.gov/snp/?term=rs2738464
https://www.ncbi.nlm.nih.gov/snp/?term=rs6511728
https://www.ncbi.nlm.nih.gov/snp/?term=rs3760782
https://www.ncbi.nlm.nih.gov/snp/?term=rs59168178
https://www.ncbi.nlm.nih.gov/snp/?term=rs2278426
https://www.ncbi.nlm.nih.gov/snp/?term=rs17242353
https://www.ncbi.nlm.nih.gov/snp/?term=rs17242843
https://www.ncbi.nlm.nih.gov/snp/?term=rs10422256
https://www.ncbi.nlm.nih.gov/snp/?term=rs72658860
https://www.ncbi.nlm.nih.gov/snp/?term=rs11669576
https://www.ncbi.nlm.nih.gov/snp/?term=rs2738447
https://www.ncbi.nlm.nih.gov/snp/?term=rs72658867
https://www.ncbi.nlm.nih.gov/snp/?term=rs2738464
https://www.ncbi.nlm.nih.gov/snp/?term=rs6511728
https://www.ncbi.nlm.nih.gov/snp/?term=rs3760782
https://www.ncbi.nlm.nih.gov/snp/?term=rs59168178
https://www.ncbi.nlm.nih.gov/snp/?term=rs2278426

Article

https://doi.org/10.1038/s43588-024-00764-8

included enhancer CAGE rare variantsin SPC24 and two sliding windows
in LDLR (chromosome 19, 11,104,367-11,106,366 bp; chromosome 19,
11,105,367-11,107,366 bp).

Analysis of non-lipid phenotypes in the TOPMed WGS data

We further applied MultiSTAAR to analyzing abroader spectrum of phe-
notypes in the TOPMed WGS data, including (1) multi-trait analysis of
fasting glucose (FG) and fasting insulin (FI) (n = 21,731)* and (2) multi-trait
analysis of four inflammation biomarkers (C-reactive protein (CRP),
interleukin-6 (IL-6), lipoprotein-associated phospholipase A2 (Lp-PLA2)
activity and lipoprotein-associated phospholipase A2 (Lp-PLA2) mass
(n=9,380)"*). Similar to the lipids analysis, for each multi-trait anal-
ysis we performed gene-centric coding and noncoding analysis and
genetic-region analysis to detect rare variant associations (Methods).

Ingene-centric coding unconditional analysis, MultiSTAAR identi-
fied seven and seven genome-wide significant associations for glycemic
and inflammation biomarker analyses, respectively. Seven and four
associations remained significant at the Bonferroni-corrected level
a=0.05/7 =7.14 x 10 after conditioning on known phenotype-specific
variants®**** (Supplementary Tables 8 and 9 and Extended Data
Figs.1a,b and 2a,b). In gene-centric noncoding unconditional analy-
sis, MultiSTAAR identified six genome-wide significant associations
for inflammation biomarker analysis, but no association remained
significant at the Bonferroni-corrected level a = 0.05/6 = 8.33 x 107
after conditioning on known phenotype-specific variants***** (Sup-
plementary Table 10 and Extended Data Fig. 2c,d).

In genetic-region unconditional analysis using 2-kb sliding win-
dows, MultiSTAAR identified 41 genome-wide significant associations
for inflammation biomarker analysis, and two associations remained
significant at the Bonferroni-corrected level a = 0.05/41=1.22 x107
after conditioning on known phenotype-specific variants***** (Sup-
plementary Table 11 and Extended Data Fig. 2e,f). No genome-wide
significant associations were identified in gene-centric noncoding and
genetic-region analyses for glycemic analysis (Extended Data Fig.1c-f).

Computation cost

The computational cost for MultiSTAAR-O to perform WGS multi-trait
rare variant analysis of n = 61,838 related TOPMed lipids samples was
2 husing 250 2.10-GHz computing cores with 12 GB of memory for
gene-centric coding analysis; 20 husing 250 2.10-GHz computing cores
with 24 GB of memory for gene-centric noncoding analysis; 2 h using
2502.10-GHz computing cores with12 GB of memory of ncRNA analysis;
and 20 h using 500 2.10-GHz computing cores with 24 GB of memory
for sliding-window analysis. The runtime for all analyses scaled linearly
with sample size*.

Discussion

In this Article we have introduced MultiSTAAR as a general statistical
framework and a flexible analytical pipeline for performing function-
ally informed multi-trait RVAS in large-scale WGS studies. By jointly
analyzing multiple quantitative traits usingan MLMM in the first step,
MultiSTAAR explicitly leverages the correlation among multiple phe-
notypes to enhance the power for detecting additional association
signals, outperforming single-trait analyses of the individual phe-
notypes. MultiSTAAR also enables conditional multi-trait analysis to
identify putatively novel rare variant associationsindependent of aset
ofknownvariants. Using TOPMed Freeze 8 WGS data, our gene-centric
multi-trait analysis of noncoding rare variants identified nine condi-
tionally significant associations with lipid traits (Table 1), including
four noncoding associations that were missed by single-trait analysis
using STAAR (Supplementary Table 6). Our genetic-region multi-trait
analysis of rare variants identified seven conditionally significant 2-kb
sliding windows associated with lipid traits (Table 2), including three
associations that were missed by single-trait analysis using STAAR
(Supplementary Table 7).

Among the seven associations that were conditionally signifi-
cant in multi-trait analysis but missed by single-trait analysis, five
of them were replicated using the UK Biobank WGS data of 170,104
samples (Tables 1and 2), including the associations of enhancer DHS
rare variants in N/IPSNAP3A and LIPC, and the associations of two slid-
ing windows in DOCK7 (chromosome 1, 62,651,447-62,653,446 bp;
chromosome 1, 62,652,447-62,654,446 bp) and an intergenic slid-
ing window (chromosome 1, 145,530,447-145,532,446 bp). Previous
research has demonstrated that both common and rare coding variants
in these genes are associated with lipid levels* . Our findings extend
this understanding by suggesting that rare noncoding variants may
also contribute to alterationsin lipid levels. These results demonstrate
the robustness of the MultiSTAAR method.

We additionally performed three double-trait analyses of these
seven results. The association of ncRNA rare variants in RP11-310H4.2
was also missed by double-trait analysis using MultiSTAAR. The remain-
ingsix results were detected by at least one of the double-trait analyses,
though not consistently by the same analysis (Supplementary Tables 6
and 7). This observation highlights the complexity of pleiotropic effects
in multi-trait analyses. We also applied MultiSTAAR to non-lipid phe-
notypes in the TOPMed WGS data by conducting multi-trait analyses
for two glycemic traits and four inflammation biomarker traits. The
quantile-quantile (Q-Q) plots were well-calibrated for all analyses,
demonstrating the validity of MultiSTAAR for use at genome-wide
significance levels (Extended Data Figs. 1b,d,fand 2b,d,f).

Our gene-centric analysis primarily focuses on detecting asso-
ciations within coding and regulatory regions of protein-coding and
ncRNA genes. Complementing this, our agnostic genetic-region
analysis employs sliding windows, and focuses on detecting associa-
tionsinintergenicregions, asupplementary approachto gene-centric
analysis. The sliding-window approach covers all variants across the
genome, including those that are not used in gene-centric analysis,
such as the noncoding variants that are not in the estimated promo-
ters and enhancers of protein-coding genes. Although there is some
overlapinthatbothanalysesinclude coding and regulatory regions, the
gene-centricmethod incorporates categorical functional annotations of
protein-coding genes that define analysis units for the analysis, and the
non-gene-centric method defines analysis units using sliding windows.

Among the five new lipid trait associations identified using
MultiSTAAR-O, which were conditionally significantin our three-trait
analysesbut undetected in single-trait analysis using TOPMed data and
replicated using UK Biobank data, two were detected by gene-centric
analysis and three by sliding-window analysis. Notably, the associations
identified by these two approaches do not overlap, underscoring the
distinct yet complementary nature of the approaches.

By dynamically incorporating multiple annotations capturing
diverse aspects of variant biological function in the second step,
MultiSTAAR further improves the power over existing multi-trait rare
variant analysis methods. Our simulation studies demonstrated that
MultiSTAAR-O maintained accurate typel error rates at genome-wide
significance levels while achieving considerable power gains over
multi-trait burden, SKAT and ACAT-V tests, which do not incorporate
functional annotation information (Supplementary Table 1 and Sup-
plementary Figs.1-32). Notably, the existing ACAT-V method’ does not
support multi-trait analysis. We extended it to accommodate multi-trait
settings and incorporated the multi-trait ACAT-V test into the Multi-
STAAR framework (Methods).

Implemented as a flexible analytical pipeline, MultiSTAAR allows
for customized input phenotype selection, variant set definition and
user-specified annotation weights to facilitate functionally informed
multi-trait analyses. In practice, we recommend utilizing a biological
knowledge-based approach to define trait groups, as it ensures a bio-
logically meaningful interpretation. Alternately, users could adopt a
data-drivenapproach wheretraitsare clustered based ontheir correlation
matrix and subsequently grouped using clustering or similar methods.
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Inaddition torare variant association analysis of coding and non-
coding regions, MultiSTAAR also provides multi-trait single-variant
analysis for common and low-frequency variants under a given MAF
or minor allele count (MAC) cutoff (for example, MAC > 20). We per-
formed single-variant analysis of three lipid traits of 61,838 TOPMed
samples using MultiSTAAR (Supplementary Fig. 33 and Supplemen-
tary Table 12). It took 8 h using 250 2.10-GHz computing cores with
12 GB of memory for multi-trait single-variant analysis of all genetic
variants with MAC =20 (72,762,611 in total), whichis scalable for large
WGS/WES datasets.

There are several limitations to this study. First, MultiSTAAR per-
forms sliding-window analysis with fixed sizes and could be further
developed to allow for dynamic windows with data-adaptive sizes in
genetic-region analysis using SCANG-STAAR***¢, Second, MultiSTAAR
could be improved to properly leverage synthetic surrogates in the
presence of partially missing phenotypes*. Third, MultiSTAAR is cur-
rently designed for analyzingindividual-level genotype and phenotype
data, which could be extended to incorporate summary statistics for
meta-analyses of multiple WGS/WES studies™.

Despite these limitations, MultiSTAAR provides a powerful sta-
tistical framework and acomputationally scalable analytical pipeline
forlarge-scale WGS multi-trait analysis with complex study samples.
As the sample sizes and number of available phenotypes increase
in biobank-scale sequencing studies, our proposed method may
contribute to a better understanding of the genetic architecture
of complex traits by elucidating the role of rare variants with pleio-
tropic effects.

Methods

Ethics statement

This study relied on analyses of genetic data from TOPMed cohorts.
The study has been approved by the TOPMed Publications Com-
mittee, TOPMed Lipids Working Group and all participating
cohorts, including Old Order Amish (phs000956.v1.p1), Athero-
sclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe
Biobank (phs001644), Coronary Artery Risk Development in
Young Adults (phs001612), Cleveland Family Study (phs000954),
Cardiovascular Health Study (phs001368), Diabetes Heart Study
(phs001412), Framingham Heart Study (phs000974), Genetic Study of
Atherosclerosis Risk (phs001218), Genetic Epidemiology Network
of Arteriopathy (phs001345), Genetic Epidemiology Network of
Salt Sensitivity (phs001217), Genetics of Lipid Lowering Drugs and
Diet Network (phs001359), Hispanic Community Health Study—
Study of Latinos (phs001395), Hypertension Genetic Epidemio-
logy Network and Genetic Epidemiology Network of Arteriopathy
(phs001293),Jackson Heart Study (phs000964), Multi-Ethnic Study
of Atherosclerosis (phs001416), San Antonio Family Heart Study
(phs001215), Genome-wide Association Study of Adiposity in Samo-
ans (phs000972), Taiwan Study of Hypertension using Rare Variants
(phs001387) and Women’s Health Initiative (phs001237) (accession
numbers are provided in parentheses). The use of human genetics
data from TOPMed cohorts was approved by the Harvard T.H. Chan
School of Public Health IRB (IRB13-0353).

Notation and model
Suppose there are nsubjects withatotal of Mvariants sequenced across
the whole genome. For the ith subject, let Y;= V4, Vi, ..., Vi) " denotes
a vector of K quantitative phenotypes; X; = (x, X, ..., X;;)" denotes q
covariates, such as age, gender and ancestral PCs; G;= (G, G, ..., G;,)"
denotes the genotype matrix of the p genetic variants in a variant set.
Because these K phenotypes may be defined on different measurement
scales, we assume that each phenotype hasbeenrescaled to have zero
mean and unit variance.

When the data consist of unrelated samples, we consider the
following multivariate linear model (MLM):

T T
Y a1+ X; & + G; By €1
Yix Qp,2 + X,Taz + G,-TBZ €

Y; = = + @
Yix o x + X[ 0 + G/ By €ix

where a, , is an intercept, &, = (&, 4, &, 4, ..., &, )" and B, = (B, ,,
Ba i - By )T are column vectors of regression coefficients for
covariates X;and genotype G;in phenotype k, respectively. The error
terms g;= (&, £, ..., £x)" are independent and identically distributed
and follow a multivariate normal distribution with the mean a vec-
tor of zeros and variance-covariance matrix X, , assumed identical
for all subjects. For all n subjects, using matrix notation we can write
model (1) as

T
Ynxl( = lnao + xnxququ + anpﬁpxk + Enxk )

where 1, is a column vector of 1s of length n, &, = (ay 1, ag o ...,
@ ¢)" is a column vector of regression intercepts, the kth
columns of &, and B, are &, and B,, respectively, and g, =
(€1, €2 ..., £,) ~ MatrixNormal,, g (0, Lsn» Exxk) fOllows a matrix
normal distribution. We calculate the scaled residual for each subject
on each phenotype, defined as &,.x = (Y,xx — Pusk) 2Ly » Where Ry
(amatrix of fitted values) and £, are estimated under the null MLM
Yok = 1,00 + Xpyeq®axk + Enxi, Where no variant has any effect on any
phenotype.

When the data consist of related samples, we consider the follow-
ing MLMM'%3"5%;

Vit a01+X a1+G B:
Y2 Ao,z + XTaz + GTBz
Y; = = 3)
Yik ®o k + XTaK +G[ B

where the random effects b, account for relatedness and remaining
population structure unaccounted by ancestral PCs*. We assume that

bk = (bik) ey ~ MatrixNormal, « (Opuk, ®nxas Oxxx) With a variance
component matrix O« and a sparse genetic relatedness matrix ®,,,,,
(refs. 21,22). For all n subjects, using matrix notation we can rewrite
equation (3) as

Yn><K = ln“g + xnxqaqu + anpoxK + bnxK + Enxk (4)

We calculate the scaled residual for each subject on each pheno-
type, defined as &, = (Yaxk — Raxk) EcLy » Where fi and £, are
estimated under the null MLMM Y, = 1,67 + Xy ®gxx + Dok + Ensk-
Under both MLM and MLMM, our goal is to test for an association
between a set of p genetic variants and K quantitative phenotypes,
adjusting for covariates and relatedness. This corresponds to testing
Ho :Bi=B2=-=Bx=0.

Multi-trait rare variant association tests using MultiSTAAR
Single-trait score-based aggregation methods* can be extended to
allow for jointly testing the association between rare variantsin a vari-
ant set and multiple quantitative phenotypes. For a given variant set,
let Sy = (Sjk)pxl( = (G,,Xp)TénX,( denote the matrix of score statistics,
where S, is the score statistic for the jth variant on the kth phenotype.
For the multi-trait burden test using MultiSTAAR (Burden-MT), we
consider the test statistic

p p
QBurdenMT = (Z szj~) V_I(Z wfsj')

=1
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where w; is the weight defined as a function of the MAF for the jth
variant*®,s; = (S5, S ;5. ..., Si)isthejthrow of Sand Vis the estimated

. . . P .
variance-covariance matrixof ' w ;S = w'S. Qguraenwr asymptotically
j=1

follows a standard x? distribution with K degrees of freedom under
the null hypothesis, and its P value can be obtained analytically while
accounting for the linkage disequilibrium (LD) between variants and
the correlation between phenotypes.

For multi-trait SKAT using MultiSTAAR (SKAT-MT), we consider
the test statistic

K p
QskarmT = Z wzjsfk
k=1j=1
Qsiarmr asymptotically follows a mixture of x> distributions under
the null hypothesis, and its P value can be obtained analytically while
accounting for the LD between variants and the correlation between
phenotypes'*®.
For multi-trait ACAT-V using MultiSTAAR (ACAT-V-MT), we propose
the test statistic

Qacarv-mr = W2MAF (1 — MAF) tan ((0.5 — po) 1)

p
+ij1 w’MAF; (1 - MAF)) tan ((0.5 - p ;) )

where p’ is the number of variants with MAC > 10, and p; is the multi-
trait association P value of individual variantj for those variants with
MAC >10 whose test statistic is given by the K degrees of freedom
multivariate score test
Q,;=5.V5's]

where Vs is the estimated variance-covariance matrix of S;; p, is the
multi-trait burden test Pvalue of extremely rare variants with MAC <10
as described above, and w2MAF (1 — MAF) is the average of the weights
w>MAF; (1~ MAF;) among the extremely rare variants with MAC<10.
Qacarvur 1S approximated well by a scaled Cauchy distribution under
the null hypothesis, and its P value can be obtained analytically while
accounting for the LD between variants and the correlation between
phenotypes”*®. Note that when K =1, the multi-trait burden, SKAT and
ACAT-V tests reduce to the original single-trait burden, SKAT and
ACAT-V tests.

Suppose we have a collection of L annotations, thenlet A, denote
the [th annotation for the jth variant in the variant set. We define the
functionally informed multi-trait burden, SKAT and ACAT-V test statis-
tics weighted by the /th annotation as follows:

T

p 14
— . -1 iT. .
QBurden-MT,l,(al,az) = (JZ=1 IIjle,(abaz)sj-) Vl,(al,az)<z ’Ijle‘(al‘az)sj-)

K p
j— 7y " 2 2
QsKAT-MT, 1, (), ay) = kZUZl Tl 4y, aSik

QACATV-MT, L, (a, ay) = ﬁ‘,w(zabaz)MAF (1-MAF)tan ((0.5 - po ;) T)

w
+,§1 i, . o, MAF; (1 - MAF;)tan ((0.5 - p ;) )

where fr,-,:M, W @) = Beta(MAF; a;, a;) with (a;, ay) et

={(1.25), (L1}, V; (4, a,) is the estimated variance-covariance matrix of
Py MW, o oS- aNd Lw?,  MAF(1—MAF) is the average of the
7 il 1,42

(a1, @)

weights ﬁj,wzj’ @)
withMAC <10.
For each type of rare variant test, we define MultiSTAAR-B,
MultiSTAAR-S and MultiSTAAR-A to incorporate multiple functional
annotations through the STAAR framework for multi-trait burden,

SKAT and ACAT-V as

MAF, (1 — MAF;) among the extremely rare variants

L, tan{(0.5 — Purden-w, 1, (@, a)) T}
TMultiSTAAR-B(ay, a3) = Z L+1

L, tan{(0.5 — Pskarm, 1, (ay.0) T
TultiSTAAR-S(a;, a,) = Z [+1

L, tan {(0.5 — PacaTv-MT, 1 (ay,a)) T}
TMultiSTAAR-A(ar, @) = Z L+1

where Tyuiistasra, v Tvuttistasrsa, 25) 8N Tyuistasraq, 25) are the test statis-
tics of MultiSTAAR-B, MultiSTAAR-S and MultiSTAAR-A, respectively.

ThePvalues OfTMu]tiSTAAR-B(al,az)r TMultiSTAAR-S(ay, a5) and TMultiSTAAR-A(ay, a,) €AN
be calculated by

{arctan (TvuiistaarB(a;,,))}
m

1
PrultisTAAR-B(ay, @) = 2-

{arctan (Tvuiistars(a,. )}
T

1
PruttisTAARS(a;, a,) = 2”

{arctan (Tyuristaar-A, a))}
T

1
Puutistanraa, @) = 5 =

Finally, we define the omnibus MultiSTAAR-O test statistic as

1
TMmultisTAAR-O = Sl Dan apcst [ TMultiSTAAR-B(ay, az)

+ TMultiSTAARS(ay, @) + TMultiSTAAR-ACay, ay) |

_ly i 1an{(0-5—Ppurgen i, ap09))T}
3|54 S, a)ed P L+1

+ta"{(o's_pSKAT—MT.I,(al,az))“} " tan{(o-s_pACAT—V—MT,l.(al.az))“}
L+1 [+1

)

and the Pvalue of Ty, istaaro Can be calculated by

P 1 {arctan (Tyyiistaar-0)}
MUltiSTAAR-O = 5 — -

MultiSTAAR-O integrates different types of test into an omnibus
approachtoachieve robust power with respect to the sparsity of causal
variants and the directionality of effects of causal variantsina variant
set. Specifically, by including Burden-MT, MultiSTAAR-O is powerful
when most variants in a variant set are causal and have effects in the
samedirection; by including SKAT-MT, MultiSTAAR-O is powerful when
notasmallnumber of variantsinavariant set are causal with effectsin
different directions, or whenvariantsinavariantset arein high linkage
disequilibrium; by including ACAT-V-MT, MultiSTAAR-O is powerful
when a small number of variants in a variant set are causal or a good
number of extremely rare variants are causal. By incorporating multiple
functional annotations, MultiSTAAR-O is powerful when any of these
functional annotations can pinpoint causal variants.

Datasimulation

Type | error rate simulations. We performed simulation studies to
evaluate how accurately MultiSTAAR controls the type I error rate.
We generated three quantitative traits from a MLM, conditional on
two covariates:
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Ya 0.5X;; + 0.5X;, €11
Yi=| Yo |=]05X;+05X, | +] €n
Y3 0.5X;; + 0.5X;, €3

where X;; ~ N(0, 1), X;, ~ Bernoulli (0.5)and

€ 07 [ 10 -01 02
ex |[~MWN||O |, | -01 10 —04
€s ol | 02 -04 10

where MVN denotes amultivariate normal distribution. The correlation
matrix of error terms g; = (g, €, €)' Was chosen to mimic the corre-
lations between three lipid traits, LDL-C, HDL-C and TG, estimated from
the TOPMed data’®. We considered asample size 0f 10,000 and gener-
ated genotypes by simulating 20,000 sequences for 100 different
regions each spanning1Mb. The datageneration used the calibration
coalescent model (COSI)* with parameters set to mimic the LD struc-
ture of African Americans. Ineach simulationreplicate, ten annotations
were generatedasA,, ..., A,y, allindependently and identically distrib-
uted as N(0, 1) for each variant, and we randomly selected 5-kb regions
from these 1-Mb regions for type I error rate simulations. We applied
MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O by
incorporating MAFs and the ten annotations together with the
Burden-MT, SKAT-MT and ACAT-V-MT tests. We repeated the procedure
with 108 replicates to examine the type I error rate at levels a=107*,
10°%and10°®.

Empirical power simulations. We next carried out simulation studies
under avariety of configurations to assess the power of MultiSTAAR-O
and how its incorporation of multiple functional annotations affects
the power compared to the multi-trait burden, SKAT and ACAT-V tests
implementedin MultiSTAAR. Ineach simulationreplicate, we randomly
selected 5-kb regions from a 1-Mb region for power evaluations. For
eachselected 5-kbregion, we generated three quantitative traits from

an MLM:
Ya
Yi=|Ya|=
Yia

where X;;, X,; and g; are defined as in the type | error rate simulations,
G;=(Gy, Gy, ..., Gp) and B, = (By 4, By i ---» By, ) are the genotypes
and effect sizes of the p genetic variantsin the signal region.

The genetic effect of variantj on phenotype k was defined as
B;,«=cdy;toallow for heterogeneous effect sizesamong variantsand
phenotypes. Specifically, we generated the causal variant indicator ¢;
according to alogistic model:

0.5X; + 0.5X, + G] B,

0.5X; + 0.5X;; + G;I-Bl €1
+ l €
0.5X; + 0.5X;; + G] B3 €3

IogitP(cj = 1) = 50 + 511/4],[1 + 612/4],12 + 5[3/‘]’13 + 6[4Aj,[4 + 6[5Aj,[5

where {l;, -, Is} c {1, ---, 10} were randomly sampled for each region.
For different regions, the causality of variants depended on different
sets of annotations. We set §;, = log (5) for all annotations and varied
the proportions of causal variants in the signal region by setting
6, =10git(0.0015), logit(0.015) and logit(0.18), which correspond to
averaging 5%,15% and 35% causal variants in the signal region, respec-
tively. We considered four scenarios of phenotypic indicator d, that
reflect different underlying genetic architectures across phenotypes:
d,d, d)=(1,0,0),(1,0,1),(1,1,0) and (1, 1,1). These correspond to
causal variants in the signal region being associated with (1) one phe-
notype only, (2) two positively correlated phenotypes, (3) two nega-
tively correlated phenotypes and (4) all three phenotypes. We modeled

the absolute effect sizes of causal variants using |y;| = co|log;,MAF;|,
suchthatit was adecreasing function of MAF. c,wassettobe 0.13,0.1,
0.1and 0.07, respectively, to ensure a decent power of tests under each
scenario. We additionally varied the proportions of causal variant effect
size directions (signs of y;) by randomly generating 100%, 80% and 50%
variants on average to have positive effects. We applied MultiSTAAR-B,
MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O using MAFs and
all ten annotations together with the Burden-MT, SKAT-MT and
ACAT-V-MT tests. We repeated the procedure with 10* replicates to
examine the power atlevel a =107". The sample size was 10,000 across
all scenarios.

To assess how different correlation structures between pheno-
types influence the enhancement of statistical power, we conducted
additional power simulation studies, including (1) independent, by

oo € 011100 . .

considering | ¢,, NMVN[ ollo1o0 ];(2) low phenotypic correlation,
€3 0 001
e 0]] 1.0 -0.05 01 )
by considering | ¢, }MVN[ 0||-005 1.0 -02 ]:and (3) high phe-
€n o]l o1 -02 10

. . . [e 01 L0 -02 0.4
notypic correlation, by considering | ¢,, NMVN[ 0l[|-02 1.0 -08||

€n 0|/l 04 -08 10

For each correlation structure, the causal variant proportions and
causal variant effect sizes were considered the same as previous power
simulation studies. Our simulation results demonstrate that Multi-
STAAR achieves robust and considerable power gain in identifying
pleiotropiclociacrossall correlationstructures compared with existing
multi-trait analysis methods (Supplementary Figs. 9-32).

Computational cost benchmarking. We benchmarked the compu-
tational cost of MultiSTAAR along with (1) the number of traits and (2)
the sample size using simulation studies. Specifically, for (1), we varied
the number traits among 2, 3, 4 and 5 while considering the sample
size at 10,000 and randomly selecting 5-kb regions. For (2), we varied
the sample sizesamong 10,000, 20,000,30,000,40,000 and 50,000
while considering three traits and randomly selecting regions with 150
variants. Computational time was benchmarked by averaging over
10,000 simulation replicates. Our benchmarking results show that
for both the null model fitting step and the MultiSTAAR testing step,
the computational time increased approximately quadratically with
the number of traits, and the computational time increased approxi-
mately linearly with the sample size (Supplementary Figs. 34 and 35).
Allanalyses were completed with less than 2 GB of memory.

Lipid traits

Conventionally measured plasma lipids, including LDL-C, HDL-C and
TGs, were included for analysis. LDL-C was either calculated by the
Friedewald equation when TG levels were <400 mg dI™ or directly
measured. Given the average effect of statins, when statins were
present, LDL-C was adjusted by dividing by 0.7. Triglycerides were
natural-log-transformed for analysis. Phenotypes were harmonized
by each cohortand depositedinto the dbGaP TOPMed Exchange Area.

Multi-trait analysis of lipids in the TOPMed WGS data

The TOPMed WGS data consist of multi-ethnic related samples'. Race/
ethnicity was defined using acombination of self-reported race/ethnic-
ity from participant questionnaires and study recruitment informa-
tion (Supplementary Note)™. A plot of ancestry PCs was presented to
illustrate the genetic diversity among the populations studied (Sup-
plementary Fig. 36). In this study, we applied MultiSTAAR to perform
multi-trait rare variant analysis of three quantitative lipid traits (LDL-C,
HDL-Cand TG) using 20 study cohorts from the TOPMed Freeze 8 WGS
data. LDL-C was adjusted for the presence of medications as before™.
For each study, we first fit a linear regression model adjusting for age,
age? and sex for each race/ethnicity-specific group. In addition, for
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Old Order Amish (OOA), we also adjusted for APOB p.R3527Qin LDL-C
analysis and adjusted for APOC3p.R19Ter in TG and HDL-C analyses™.
The covariate distributions of samples with and without missing lipid
traits are similar (Supplementary Fig. 37), indicating that data are
plausibly missing at random.

Total cholesterol (TC) was not included in the multi-trait analysis
based on the Friedewald equation TC = LDL-C + HDL-C + TG/5. Given
that TCis a linear combination of LDL-C, HDL-C and TG, it does not
provide additional biological informationwhen LDL-C, HDL-Cand TG
arealready included in the model.

We performed rank-based inverse-normal transformation of the
residuals of LDL-C, HDL-C and TG within each race/ethnicity-specific
group. We then fita MLMM for the rank-normalized residuals, adjusting
for11ancestral PCs, ethnicity group indicators and a variance compo-
nent forempirically derived sparse kinship matrix to account for popu-
lation structure, relatedness and correlation between phenotypes.

We next applied MultiSTAAR-O to perform multi-trait variant
set analyses for rare variants (MAF <1%) by scanning the genome,
including gene-centric analysis of each protein-coding gene using
five coding variant functional categories (putative loss-of-function
rare variants, missense rare variants, disruptive missense rare vari-
ants, putative loss-of-function and disruptive missense rare variants
and synonymous rare variants); seven noncoding variant functional
categories (promoter rare variants overlaid with CAGE sites, promoter
rare variants overlaid with DHS sites, enhancer rare variants overlaid
with CAGE sites, enhancer rare variants overlaid with DHS sites, UTR
rare variants, upstream region rare variants, downstream region rare
variants) and rare variantsin ncRNA genes; and genetic-region analysis
using 2-kb sliding windows across the genome with a1-kb skip length.

Our analysis revealed that MultiSTAAR-O detected 325 signifi-
cantassociations that were missed by both existing multi-trait-based
methods Burden-MT and SKAT-MT. Conversely, Burden-MT identified
four and SKAT-MT identified 11 significant associations not detected
by MultiSTAAR-O (Supplementary Fig. 38). This demonstrates the
robust power of MultiSTAAR-O, particularly in handling the sparsity and
directionality of causal variant effects through anintegrated omnibus
approach.

The WGS multi-trait rare variant analysis was performed using the
Rpackages MultiSTAAR (version 0.9.7, https://github.com/xihaoli/Multi
STAAR)**and STAARpipeline (version 0.9.7, https://github.com/xihaoli/
STAARpipeline)®. The WGS rare variant single-trait analysis of LDL-C,
HDL-C and TG was performed using the R packages STAAR (version
0.9.7, http://github.com/xihaoli/STAAR)*® and STAARpipeline (version
0.9.7)%. Both multi-trait and single-trait analyses results were sum-
marized and visualized using the R package STAARpipelineSummary
(version 0.9.7, https://github.com/xihaoli/STAARpipelineSummary)*.

Multi-trait analysis of lipids in the UK Biobank WGS data

We used pVCF format files for the WGS data of 200,004 UK Biobank
participants (UK Biobank Field #24304) and followed the same QC
procedureasinapreviousstudy of UK Biobank WGS data’. We keptall
variants withapassindicated by QClabel and AAScore greater than 0.5,
where AAScore was generated by GraphTyper, the software used by the
UK Biobank to perform genotype calling. We harmonized three lipid
traits (LDL-C, HDL-C and TG) of the UK Biobank WGS data. For LDL-C,
we excluded individuals with LDL-C <10 mg dI” or TG > 400 mg ml™.
LDL-C was then adjusted by dividing the value by 0.7 among individu-
als reporting lipid-lowering medication use or statin use at any time
point. TG levels were natural-logarithm-transformed. A total of 170,104
individuals had dataon LDL-C, HDL-C and TG.

Wefitalinear regression model adjusting for age, age?, sexand the
firsttenancestral PCs. Residuals were then rank-based inverse-normal
transformed and multiplied by the standard deviation. We next fit an
MLMM for the rank-normalized residuals of LDL-C, HDL-C and TG,
adjusting for age, age?, sex and the ten ancestral PCs, and a variance

component for an empirically derived sparse kinship matrix to
account for populationstructure, relatedness and correlation between
phenotypes.

We next applied MultiSTAAR-O to perform multi-trait variant
set analyses for rare variants (MAF <1%), including gene-centric
analysis of protein-coding genes using five coding variant functional
categories; seven noncoding variant functional categories and rare
variantsinncRNA genes; and genetic-region analysis using 2-kb sliding
windows. For each analysis, the same set of annotations were incor-
porated as weights in MultiSTAAR-O (Supplementary Table 3). Our
analysis was performed on the UK Biobank Research Analysis Platform
(RAP). Specifically, the gene-centric coding analysis of five different
masks for protein-coding genes across the genome required 1,183
central processing unit (CPU) hours with 16 GB of memory on aver-
age. The gene-centric noncoding analysis of seven different masks
for protein-coding genes across the genome would require 17,173 CPU
hours with 32 GB of memory on average. The gene-centric noncoding
analysis of seven different masks for ncRNA genes across the genome
required 2,453 CPU hours with 21 GB of memory on average.

Analysis of non-lipid phenotypes in the TOPMed WGS data

We applied MultiSTAAR to identify rare variants (MAF < 1%) associated
with non-lipid phenotypes in the TOPMed WGS data, including (1)
multi-trait analysis of FG and FI (n = 21,731) and (2) multi-trait analysis
of fourinflammation biomarkers, including CRP, IL-6, Lp-PLA2 activity
and Lp-PLA2 mass (n=9,380). The definitions and phenotype harmoni-
zation for these two glycemic traits and four inflammation biomarker
traits were the same as those used in previous studies***,

For each trait, we first fit a linear regression model adjusting for
age and sex for each study-race/ethnicity group, with additional adjust-
ment of age?and body mass index for FG and FI, ten ancestral PCs for FG
and Fland 11ancestral PCs for CRP, IL-6, Lp-PLA2 activity and Lp-PLA2
mass. The residuals were transformed using the rank-based inverse-
normal transformation. We then fitan MLMM for the rank-normalized
residuals, adjusting for 10 and 11ancestral PCs for glycemic and inflam-
mation biomarker analysis, respectively, study-ethnicity group indi-
cators and a variance component for the empirically derived kinship
matrix to account for populationstructure, relatedness and correlation
between phenotypes. The outputs of two corresponding MLMM null
models were then used in the multi-trait rare variant analysis of gly-
cemic and inflammation biomarker traits by applying MultiSTAAR-O
integrated in the STAARpipeline, including gene-centric analysis of
protein-coding genes using five coding variant functional categories;
seven noncoding variant functional categories and rare variants in
ncRNA genes; and genetic-region analysis using 2-kb sliding windows.
For each analysis, the same set of annotations were incorporated as
weights in MultiSTAAR-O (Supplementary Table 3).

Genome build
Allgenome coordinates are given in NCBI GRCh38/UCSC hg38.

Statistics and reproducibility

Sample size was not predetermined. The multi-trait analysis consisted
of 20 study cohorts of TOPMed Freeze 8 and had 61,838 samples with
lipid traits. We did not use any study design that required randomiza-
tion or blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

This Article used TOPMed Freeze 8 WGS data and lipids phenotype
data. Genotype and phenotype dataare both available in the database
of Genotypes and Phenotypes. The TOPMed WGS data were from the
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following 20 study cohorts (accession numbers provided in paren-
theses): Old Order Amish (phs000956.v1.p1), Atherosclerosis Risk in
Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644),
Coronary Artery Risk Development in Young Adults (phs001612),
Cleveland Family Study (phs000954), Cardiovascular Health Study
(phs001368), Diabetes Heart Study (phs001412), Framingham Heart
Study (phs000974), Genetic Study of Atherosclerosis Risk (phs001218),
Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic
Epidemiology Network of Salt Sensitivity (phs001217), Genetics of
Lipid Lowering Drugs and Diet Network (phs001359), Hispanic Com-
munity Health Study—Study of Latinos (phs001395), Hypertension
Genetic Epidemiology Network and Genetic Epidemiology Network
of Arteriopathy (phs001293), Jackson Heart Study (phs000964),
Multi-Ethnic Study of Atherosclerosis (phs001416), San Antonio Family
Heart Study (phs001215), Genome-Wide Association Study of Adipos-
ityinSamoans (phs000972), Taiwan Study of Hypertension using Rare
Variants (phs001387) and Women’s Health Initiative (phs001237).
The sample sizes, ancestry and phenotype summary statistics of
these cohortsare provided in Supplementary Table 2. Source data for
Figs. 2 and 3 and Extended Data Figs.1and 2 are available via Zenodo
(https://doi.org/10.5281/zenodo.14213842)°%. The UK Biobank analyses
were conducted using the UK Biobank resource under application
52008. The functional annotation data are publicly available and can
be downloaded from the following links: GRCh38 CADD v1.4 (https://
cadd.gs.washington.edu/download); ANNOVAR dbNSFP v3.3a (https://
annovar.openbioinformatics.org/en/latest/user-guide/download);
LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT); FATHMM-
XF (http://fathmm.biocompute.org.uk/fathmm-xf); FANTOMS CAGE
(https://fantom.gsc.riken.jp/5/data); GeneCards (https://www.gen
ecards.org; v4.7 for hg38); and Umap/Bismap (https://bismap.hoff
manlab.org; ‘before March 2020’ version). Inaddition, recombination
rate and nucleotide diversity were obtained from ref. 59. The whole-
genome individual functional annotation data were assembled from
avariety of sources, and the computed annotation PCs are available
atthe Functional Annotation of Variant-Online Resource (FAVOR) site
(https://favor.genohub.org)®® and the FAVOR database (https://doi.
org/10.7910/DVN/1VGTJI)®.

Code availability

MultiSTAAR is implemented as an open-source R package available
at https://github.com/xihaoli/MultiSTAAR and https://hsph.harvard.
edu/research/lin-lab/software. Data analysis was performedinR (4.1.0).
STAARv0.9.7 and MultiSTAAR v0.9.7 were used in simulation and real
data analysis and implemented as open-source R packages available
at https://github.com/xihaoli/STAAR (ref. 56) and https://github.com/
xihaoli/MultiSTAAR (ref. 54). The assembled functional annotation
datawere downloaded from FAVOR using Wget (https://www.gnu.org/
software/wget/wget.html).
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Extended Data Fig. 1| Manhattan plots and Q-Q plots for unconditional
gene-centric coding, noncoding and genetic region (2-kb sliding window)
multi-trait analysis of fasting glucose (FG) and fasting insulin (FI) using
TOPMed data (n=21,731). a, Manhattan plots for unconditional gene-centric
coding analysis of protein-coding genes. The horizontal line indicates a
genome-wide MultiSTAAR-O Pvalue threshold of 5.00 x 107. The significant
threshold is defined by multiple comparisons using the Bonferroni correction
(0.05/(20,000 x 5) = 5.00 x 107). Different symbols represent the
MultiSTAAR-O Pvalue of the protein-coding gene using different functional
categories (putative loss-of-function, putative loss-of-function and disruptive
missense, missense, disruptive missense, synonymous). b, Quantile-quantile
plots for unconditional gene-centric coding analysis of protein-coding genes.
Different symbols represent the MultiSTAAR-O P-value of the gene using different
functional categories. ¢, Manhattan plots for unconditional gene-centric
noncoding analysis of protein-coding genes. The horizontal line indicates a
genome-wide MultiSTAAR-O Pvalue threshold of 3.57 x 107~". The significant
threshold is defined by multiple comparisons using the Bonferroni correction

(0.05/(20,000 x 7) = 3.57 x 1077). Different symbols represent the
MultiSTAAR-O Pvalue of the protein-coding gene using different functional
categories (upstream, downstream, UTR, promoter_CAGE, promoter_DHS,
enhancer_CAGE, enhancer_DHS). Promoter_CAGE and promoter_DHS are the
promoters with overlap of Cap Analysis of Gene Expression (CAGE) sites and
DNase hypersensitivity (DHS) sites for a given gene, respectively. Enhancer_ CAGE
and enhancer_DHS are the enhancers in GeneHancer-predicted regions with the
overlap of CAGE sites and DHS sites for a given gene, respectively. d, Quantile-
quantile plots for unconditional gene-centric noncoding analysis of protein-
coding genes. Different symbols represent the MultiSTAAR-O P-value of the gene
using different functional categories. e, Manhattan plot showing the associations
of 2.68 million 2-kb sliding windows versus —log;, (P) of MultiSTAAR-O. The
horizontal line indicates agenome-wide Pvalue threshold of 1.86 x 1075

f, Quantile-quantile plot of 2-kb sliding window MultiSTAAR-O Pvalues. In panels,
a,cand e, the chromosome number are indicated by the colors of dots. In all
panels, MultiSTAAR-Ois a two-sided test.
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Extended Data Fig. 2| Manhattan plots and Q-Q plots for unconditional
gene-centric coding, noncoding and genetic region (2-kb sliding window)
multi-trait analysis of C-reactive protein (CRP), interleukin-6 (IL-6),
lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, and lipoprotein-
associated phospholipase A2 (Lp-PLA2) mass using TOPMed data (n =9,380).
a, Manhattan plots for unconditional gene-centric coding analysis of protein-
coding genes. The horizontal line indicates a genome-wide MultiSTAAR-O Pvalue
threshold of 5.00 x 10~". The significant threshold is defined by multiple

comparisons using the Bonferroni correction (0.05/ (20,000 x 5) = 5.00 x 1077).

Different symbols represent the MultiSTAAR-O Pvalue of the protein-coding
gene using different functional categories (putative loss-of-function, putative
loss-of-function and disruptive missense, missense, disruptive missense,
synonymous). b, Quantile-quantile plots for unconditional gene-centric coding
analysis of protein-coding genes. Different symbols represent the MultiSTAAR-O
P-value of the gene using different functional categories. ¢, Manhattan plots for
unconditional gene-centric noncoding analysis of protein-coding genes. The
horizontal line indicates agenome-wide MultiSTAAR-O Pvalue threshold of

3.57x107.The significant threshold is defined by multiple comparisons using
the Bonferroni correction (0.05/ (20,000 x 7) = 3.57 x 1077). Different symbols
represent the MultiSTAAR-O Pvalue of the protein-coding gene using different
functional categories (upstream, downstream, UTR, promoter_CAGE, promoter_
DHS, enhancer_CAGE, enhancer_DHS). Promoter_CAGE and promoter_DHS are
the promoters with overlap of Cap Analysis of Gene Expression (CAGE) sites and
DNase hypersensitivity (DHS) sites for a given gene, respectively. Enhancer_CAGE
and enhancer_DHS are the enhancers in GeneHancer predicted regions with the
overlap of CAGE sites and DHS sites for agiven gene, respectively. d, Quantile-
quantile plots for unconditional gene-centric noncoding analysis of protein-
coding genes. Different symbols represent the MultiSTAAR-O P-value of the gene
using different functional categories. e, Manhattan plot showing the associations
of 2.67 million 2-kb sliding windows versus —log, , (P) of MultiSTAAR-O. The
horizontal line indicates agenome-wide Pvalue threshold of 1.87 x 1075

f, Quantile-quantile plot of 2-kb sliding window MultiSTAAR-O P values. In panels,
a,cand e, the chromosome number are indicated by the colors of dots. In all
panels, MultiSTAAR-O is a two-sided test.
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Data collection  The software was used for downloading the data as follows: Wget v1.21.4 (https://www.gnu.org/software/wget/wget.html).

Data analysis Data analysis was performed in R (4.1.0). STAAR v0.9.7 and MultiSTAAR v0.9.7 were used in simulation and real data analysis and
implemented as open-source R packages available at https://github.com/xihaoli/STAAR and https://github.com/xihaoli/MultiSTAAR. These
two packages have been archived on Zenodo using xxx. GraphTyper (May 2023) was used to perform genotype calling of the UK Biobank 200K
WGS data.
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Phenotypes. The TOPMed WGS data were from the following twenty study cohorts (accession numbers provided in parentheses): Old Order Amish
(phs000956.v1.p1), Atherosclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644), Coronary Artery Risk Development in Young
Adults (phs001612), Cleveland Family Study (phs000954), Cardiovascular Health Study (phs001368), Diabetes Heart Study (phs001412), Framingham Heart Study
(phs000974), Genetic Study of Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic Epidemiology Network of Salt
Sensitivity (phs001217), Genetics of Lipid Lowering Drugs and Diet Network (phs001359), Hispanic Community Health Study - Study of Latinos (phs001395),
Hypertension Genetic Epidemiology Network and Genetic Epidemiology Network of Arteriopathy (phs001293), Jackson Heart Study (phs000964), Multi-Ethnic Study
of Atherosclerosis (phs001416), San Antonio Family Heart Study (phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972), Taiwan Study
of Hypertension using Rare Variants (phs001387), and Women'’s Health Initiative (phs001237). The sample sizes, ancestry and phenotype summary statistics of
these cohorts are given in Supplementary Table 2. The UK Biobank analyses were conducted using the UK Biobank resource under application 52008.

The functional annotation data are publicly available and were downloaded from the following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/
download); ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-guide/download); LINSIGHT (https://github.com/CshlSiepelLab/
LINSIGHT); FATHMM-XF (http://fathmm.biocompute.org.uk/fathmm-xf); FANTOMS CAGE (https://fantom.gsc.riken.jp/5/data); GeneCards (https://
www.genecards.org; v4.7 for hg38); and Umap/Bismap (https://bismap.hoffmanlab.org; ‘before March 2020 version). In addition, recombination rate and
nucleotide diversity were obtained from Gazal et al. The whole-genome individual functional annotation data was assembled from a variety of sources and the
computed annotation principal components are available at the Functional Annotation of Variant-Online Resource (FAVOR) site (https://favor.genohub.org) and the
FAVOR database (https://doi.org/10.7910/DVN/1VGTIJI).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex/gender was defined using a combination of self-reported sex/gender (from participant questionnaires) and study
recruitment information.

Population characteristics The TOPMed data consist of ancestrally diverse and multi-ethnic related samples. The data analyzed in this paper include
38,744 (62.7%) females; 15,636 (25.3%) Black or African-American, 27,439 (44.4%) White, 4,461 (7.2%) Asian American,
13,138 (21.2%) Hispanic/Latino American, and 1,164 (1.9%) Samoans. Race/ethnicity was defined using a combination of self-
reported race/ethnicity (from participant questionnaires) and study recruitment information. The average age of the study
participants is 52 with a standard deviation of 15.

Recruitment The TOPMed Freeze 8 lipids data included whole genome sequencing data of 61,838 samples from multiple existing NHLBI
deep phenotyped study cohorts. The study participants of the TOPMed data have diverse ethnicities. The sample sizes,
ethnicity and phenotype summary statistics can be found in Supplemental Table 2. Detailed information of participant
recruitment of each study cohort can be found in Supplementary Note. More details can be found at https://
topmed.nhlbi.nih.gov.

Ethics oversight This study relied on analyses of genetic data from TOPMed cohorts. The study has been approved by the TOPMed
Publications Committee, TOPMed Lipids Working Group and all the participating cohorts, including Old Order Amish
(phs000956.v1.p1), Atherosclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644), Coronary
Artery Risk Development in Young Adults (phs001612), Cleveland Family Study (phs000954), Cardiovascular Health Study
(phs001368), Diabetes Heart Study (phs001412), Framingham Heart Study (phs000974), Genetic Study of Atherosclerosis Risk
(phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic Epidemiology Network of Salt Sensitivity
(phs001217), Genetics of Lipid Lowering Drugs and Diet Network (phs001359), Hispanic Community Health Study - Study of
Latinos (phs001395), Hypertension Genetic Epidemiology Network and Genetic Epidemiology Network
of Arteriopathy (phs001293), Jackson Heart Study (phs000964), Multi-Ethnic Study of Atherosclerosis (phs001416), San
Antonio Family Heart Study (phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972), Taiwan
Study of Hypertension using Rare Variants (phs001387), and Women'’s Health Initiative (phs001237), where the accession
numbers are provided in parenthesis. The use of human genetics data from TOPMed cohorts was approved by the Harvard
T.H. Chan School of Public Health IRB (IRB13-0353).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size The analysis consists of all available 61,838 samples from twenty approved study cohorts of TOPMed Freeze 8. No sample size calculation was
performed.
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Data exclusions  For TOPMed data, failed variants were excluded in the quality control (QC) procedure.

Replication The analysis of TOPMed data identified five new lipid trait associations, which were conditionally significant in our multi-trait analyses but
undetected in single-trait analysis using TOPMed data. All five assocations were replicated using UK Biobank data using Bonferroni correction,
two were detected by gene-centric analysis and three by sliding window analysis. Experimental replication was not attempted.

Randomization  Both TOPMed and UK Biobank are observational studies. For TOPMed data, age, age2, sex, eleven ancestry principal components, ethnicity
group indicators, and a variance component for empirically derived sparse kinship matrix were used to account for potential confounding
factors such as population structures and sample relatedness. For UK Biobank data, age, age2, sex, ten ancestry principal components, and a
variance component for empirically derived sparse kinship matrix were used to account for potential confounding factors such as population
structures and sample relatedness. No randomization was used in the study design.

Blinding We used de-identified coded data for analysis, and hence were blinded.
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