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A statistical framework for multi-trait rare 
variant analysis in large-scale whole-genome 
sequencing studies
 

Large-scale whole-genome sequencing (WGS) studies have improved 
our understanding of the contributions of coding and noncoding rare 
variants to complex human traits. Leveraging association effect sizes 
across multiple traits in WGS rare variant association analysis can improve 
statistical power over single-trait analysis, and also detect pleiotropic genes 
and regions. Existing multi-trait methods have limited ability to perform 
rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a 
statistical framework and computationally scalable analytical pipeline 
for functionally informed multi-trait rare variant analysis in large-scale 
WGS studies. MultiSTAAR accounts for relatedness, population structure 
and correlation among phenotypes by jointly analyzing multiple traits, 
and further empowers rare variant association analysis by incorporating 
multiple functional annotations. We applied MultiSTAAR to jointly analyze 
three lipid traits in 61,838 multi-ethnic samples from the Trans-Omics for 
Precision Medicine (TOPMed) Program. We discovered and replicated new 
associations with lipid traits missed by single-trait analysis.

Advances in next-generation sequencing technologies and the decreas-
ing cost of whole-exome/whole-genome sequencing (WES/WGS) have 
made it possible to study the genetic underpinnings of rare variants 
(that is, minor allele frequency (MAF) < 1%) in complex human traits. 
Large nationwide consortia and biobanks, such as the Trans-Omics for 
Precision Medicine (TOPMed) Program1 of the National Heart, Lung 
and Blood Institute (NHLBI), the National Human Genome Research 
Institute’s Genome Sequencing Program (GSP), the National Institute 
of Health’s All of Us Research Program2 and the UK’s Biobank WGS 
Program3, are expected to sequence more than a million individuals 
in total, at more than one billion genetic variants in both coding and 
noncoding regions of the human genome, while also recording thou-
sands of phenotypes. To mitigate the lack of power of single-variant 
analyses to identify rare variant associations4, variant set tests have 
been proposed to analyze the joint effects of multiple rare variants5–9, 
with most of the work focusing on single trait analysis.

Pleiotropy occurs when genetic variants influence multiple traits10. 
There is growing empirical evidence from genome-wide association 

studies (GWASs) that many variants have pleiotropic effects11,12. Iden-
tifying these effects can provide valuable insights into the genetic 
architecture of complex traits13. As such, it is of increasing interest to 
identify pleiotropic rare variants by jointly analyzing multiple traits in 
WGS rare variant association studies (RVASs).

Several existing methods for multi-trait rare variant associa-
tion analysis, including MSKAT14, Multi-SKAT15 and MTAR16, have 
shown that leveraging the cross-phenotype correlation structure can 
improve the power of multi-trait analyses compared to single-trait 
analyses when analyzing pleiotropic genes14–17. However, existing 
methods do not scale well, and are not feasible when analyzing 
large-scale WGS studies with hundreds of millions of rare variants in 
samples exhibiting relatedness and population structure. Further-
more, none of the existing multi-trait rare variant analysis methods 
leverage functional annotations that predict the biological function-
ality of variants, resulting in limited interpretability and power loss. 
Although the STAAR method18 dynamically incorporates multiple 
variant functional annotations to maximize the power of rare variant 

Received: 12 November 2023

Accepted: 20 December 2024

Published online: 7 February 2025

 Check for updates

 e-mail: li@hsph.harvard.edu; zl2509@cumc.columbia.edu; xlin@hsph.harvard.edu

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00764-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00764-8&domain=pdf
mailto:li@hsph.harvard.edu
mailto:zl2509@cumc.columbia.edu
mailto:xlin@hsph.harvard.edu


Nature Computational Science | Volume 5 | February 2025 | 125–143 126

Article https://doi.org/10.1038/s43588-024-00764-8

annotations18 (Fig. 1a). Specifically, MultiSTAAR utilizes annotation PCs 
to capture and prioritize the multidimensional biological functions of 
variants. MultiSTAAR then integrates these annotation PCs with other 
integrative functional scores and minor allele frequencies within the 
MultiSTAAR test statistics using an omnibus weighting scheme.

In WGS RVASs, an important but often underemphasized challenge 
is selecting biologically meaningful and functionally interpretable 
analysis units, especially for the noncoding genome23,24. In gene-centric 
analyses of multiple traits, MultiSTAAR provides five functional catego-
ries (masks) to aggregate coding rare variants of each protein-coding 
gene, as well as an additional eight masks of regulatory regions to 
aggregate noncoding rare variants. In non-gene-centric analyses of 
multiple traits, MultiSTAAR performs agnostic genetic-region analyses 
using sliding windows18,25 (Fig. 1b).

For each rare variant set analyzed, MultiSTAAR first constructs 
the multi-trait burden, SKAT and ACAT-V test statistics (Methods). 
For each type of rare variant test, MultiSTAAR calculates multiple 
candidate P values using different variant functional annotations as 
weights, following the STAAR framework18. MultiSTAAR then aggre-
gates the association strength by combining the P values from all 
annotations using the ACAT method, which provides robustness 
to correlation between tests9, to obtain the functionally informed 
multi-trait burden (MultiSTAAR-B), SKAT (MultiSTAAR-S) and ACAT-V 
(MultiSTAAR-A) tests, and proposes an omnibus test, MultiSTAAR-O, 
which leverages the advantages of the different types of test using 
the ACAT method (Fig. 1a and Methods). Furthermore, MultiSTAAR 
can test multi-trait rare variants’ associations conditional on a set of 
known associations (Fig. 1b).

Simulation studies
To evaluate the type I error rates and the power of MultiSTAAR, we 
performed simulation studies under several configurations. Following 
the steps described in Data Simulation (Methods), we generated three 
quantitative traits with a correlation matrix similar to the empirical 
correlation in the three lipid traits26–28. We then generated genotypes 

association tests, it is designed for single-trait analysis and cannot be 
directly applied to multiple traits.

To overcome these limitations, we propose the ‘Multi-trait 
variant-Set Test for Association using Annotation infoRmation’ (Multi-
STAAR), a statistical framework for multi-trait rare variant analyses of 
large-scale WGS studies and biobanks. It has several features. First, by 
fitting a null multivariate linear mixed model (MLMM)19 for multiple 
quantitative traits simultaneously, adjusting for ancestry principal 
components (PCs)20 and using a sparse genetic relatedness matrix 
(GRM)21,22, MultiSTAAR scales well but also accounts for relatedness 
and population structure, as well as correlations among the multiple 
traits. Second, MultiSTAAR enables the incorporation of multiple vari-
ant functional annotations as weights to improve the power of RVASs. 
Furthermore, we provide MultiSTAAR via a comprehensive pipeline for 
large-scale WGS studies that facilitates functionally informed multi-trait 
analysis of both coding and noncoding rare variants. Third, MultiSTAAR 
enables conditional multi-trait analysis to assess rare variant association 
signals beyond known common and low-frequency variants.

In the current study we conducted extensive simulation studies 
to demonstrate the validity of MultiSTAAR and to assess the power 
gain of MultiSTAAR by incorporating multiple relevant variant func-
tional annotations, and its ability to preserve type I error rates. We then 
applied MultiSTAAR to perform WGS RVAS of 61,838 ancestrally diverse 
participants from NHLBI’s TOPMed consortium by jointly analyzing 
three circulating lipid traits.

Results
Overview of the methods
MultiSTAAR is a statistical framework and an analytic pipeline for  
jointly analyzing multiple traits in large-scale WGS RVASs. There are 
two main components in the MultiSTAAR framework: (1) fitting null 
MLMMs using ancestry PCs and sparse GRMs to account for population 
structure, relatedness and the correlation between phenotypes and 
(2) testing for associations between each aggregated variant set and 
multiple traits by dynamically incorporating multiple variant functional 
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Fig. 1 | MultiSTAAR framework and pipeline. a, MultiSTAAR framework: (i) fit null 
MLMMs using sparse GRM and ancestry PCs to account for population structure, 
relatedness and the correlation between phenotypes; (ii) test for associations 
between each variant set and multiple traits by dynamically incorporating 
multiple variant functional annotations. b, MultiSTAAR pipeline: (i) prepare 
the input data of MultiSTAAR, including genotypes, multiple phenotypes and 

covariates; (ii) calculate sparse GRM, ancestry PCs and annotate all variants in 
the genome; (iii) perform single-variant analysis for common and low-frequency 
variants; (iv) define the rare variant analysis units, including gene-centric 
analysis of five coding functional categories and eight noncoding functional 
categories and non-gene-centric analysis of sliding windows; (v) provide result 
summarization and perform analytical follow-up via conditional analysis.
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by simulating 20,000 sequences for 100 different 1-megabase (Mb) 
regions, each of which was generated to mimic the linkage disequilib-
rium structure of an African American population by using the cali-
bration coalescent model29. Throughout the simulation studies, we 
randomly and uniformly selected 5-kilobase (kb) regions from these 
1-Mb regions and considered sample sizes of 10,000 for each replicate. 
The simulation studies focused on aggregating uncommon variants 
with MAF < 5%.

Type I error rate evaluations
We performed 108 simulations to evaluate the type I error rates of the 
multi-trait burden, SKAT, ACAT-V and MultiSTAAR-O tests at α = 10−4,  
10−5 and 10−6 (Supplementary Table 1). The results show that, for multi- 
trait rare variant analysis, all four MultiSTAAR tests controlled the type 
I error rates at very close to nominal α levels.

Empirical power simulations
We next assessed the power of MultiSTAAR-O for the analysis of multiple 
phenotypes under different genetic architectures, while also comparing 
its power with existing methods. Specifically, we considered four mod-
els, in which variants in the signal region (variant–phenotype association 
regions) were associated with (1) one phenotype only, (2) two positively 
correlated phenotypes, (3) two negatively correlated phenotypes and (4) 
all three phenotypes. In addition, we considered different proportions 
(5%, 15% and 35% on average) of causal variants in the signal region, where 
the causality of variants depended on different sets of annotations, 
and the effect size directions of causal variants were allowed to vary 
(Methods). Power was evaluated as the proportions of P values less than 
α = 10−7 based on 104 simulations. Overall, MultiSTAAR-O consistently 
delivered higher power to detect signal regions compared to multi-trait 
burden, SKAT and ACAT-V tests, through its incorporation of multiple 
annotations (Supplementary Figs. 1–32). This power advantage was also 
robust to the existence of non-informative annotations.

Application to the TOPMed lipids WGS data
We applied MultiSTAAR to identify rare variant associations with three 
quantitative lipid traits (low-density lipoprotein cholesterol (LDL-C), 
high-density lipoprotein cholesterol (HDL-C) and trigylcerides (TG)) 
through a multi-trait analysis using TOPMed Freeze 8 WGS data, com-
prising 61,838 individuals from 20 multi-ethnic studies (Supplemen-
tary Note). LDL-C values were adjusted for the usage of lipid-lowering 
medication26,30 (Methods), and DNA samples were sequenced at more 
than 30× target coverage. Sample- and variant-level quality control (QC) 
steps were performed for each participating study1,26,30.

Race/ethnicity was measured using a combination of self-reported 
race/ethnicity and study recruitment information31 (Supplementary 
Note). Of the 61,838 samples, 15,636 (25.3%) were Black or African 

American, 27,439 (44.4%) were White, 4,461 (7.2%) were Asian or Asian 
American, 13,138 (21.2%) were Hispanic/Latino American and 1,164 
(1.9%) were Samoans. There were 414 million single-nucleotide vari-
ants (SNVs) observed overall, with 6.5 million (1.6%) common variants 
(MAF > 5%), 5.2 million (1.2%) low-frequency variants (1% ≤ MAF ≤ 5%) 
and 402 million (97.2%) rare variants (MAF < 1%). The study-specific 
demographics and baseline characteristics are provided in Supple-
mentary Table 2.

Gene-centric multi-trait analysis of rare variants
We applied MultiSTAAR-O on the gene-centric multi-trait analysis of  
coding and noncoding rare variants of genes with lipid traits in 
TOPMed. For coding variants, rare variants (MAF < 1%) from five 
coding functional categories (masks) were aggregated, separately, 
and analyzed using a joint model for LDL-C, HDL-C and TG, including  
(1) putative loss-of-function (stop gain, stop loss and splice) rare vari-
ants, (2) missense rare variants, (3) disruptive missense rare variants, 
(4) putative loss-of-function and disruptive missense rare variants 
and (5) synonymous rare variants of each protein-coding gene. The 
putative loss-of-function, missense and synonymous rare variants 
were defined by GENCODE variant effect predictor (VEP) categories32. 
The disruptive missense variants were further defined by MetaSVM33, 
which measures the deleteriousness of missense mutations. We incor-
porated nine annotation principal components (aPCs)18,24,26, CADD34, 
LINSIGHT35, FATHMM-XF36 and MetaSVM33 (for missense rare variants 
only) along with the two MAF-based weights4 in MultiSTAAR-O (Sup-
plementary Table 3). The overall distribution of MultiSTAAR-O P values 
was well calibrated for the multi-trait analysis of coding rare variants 
(Fig. 2b). At a Bonferroni-corrected significance threshold of α = 0.05/
(20,000 × 5) = 5.00 × 10−7, accounting for five different coding masks 
across protein-coding genes, MultiSTAAR-O identified 51 genome-wide 
significant associations using unconditional multi-trait analysis (Fig. 2a 
and Supplementary Table 4). After conditioning on previously reported 
variants associated with LDL-C, HDL-C or TG located within a 1-Mb 
broader region of each coding mask in the GWAS Catalog and Million 
Veteran Program (MVP)26,37,38, 34 out of the 51 associations remained sig-
nificant at the Bonferroni-corrected threshold of α = 0.05/51 = 9.80 × 10−4 
(Supplementary Table 5). We then performed replication analyses of 
these 34 conditionally significant associations using the UK Biobank 
WGS data of 170,104 individuals (Methods), and 32 were replicated with 
a conditional P < 9.80 × 10−4 in UK Biobank (Supplementary Table 5).

For noncoding variants, rare variants from eight noncoding masks 
were analyzed in a similar fashion: (1) promoter rare variants over-
laid with cap analysis of gene expression (CAGE) sites39, (2) promoter 
rare variants overlaid with DNase hypersensitivity (DHS) sites40, (3) 
enhancer rare variants overlaid with CAGE sites41,42, (4) enhancer rare 
variants overlaid with DHS sites40,42, (5) untranslated region (UTR) rare 

Fig. 2 | Manhattan plots and Q–Q plots for unconditional gene-centric coding, 
noncoding and ncRNA multi-trait analysis of LDL-C, HDL-C and TG using 
TOPMed data (n = 61,838). a, Manhattan plots for unconditional gene-centric 
coding analysis of protein-coding genes. The horizontal red dotted line indicates 
a genome-wide MultiSTAAR-O P value threshold of 5.00 × 10−7. The significant 
threshold is defined by multiple comparisons using the Bonferroni correction 
(0.05/(20,000 × 5) = 5.00 × 10−7). Different symbols represent the MultiSTAAR-O 
P value of the protein-coding gene using different functional categories 
(putative loss-of-function (pLoF), putative loss-of-function and disruptive 
missense (pLoF + D), missense, disruptive missense, synonymous). b, Q–Q 
plots for unconditional gene-centric coding analysis of protein-coding genes. 
Different symbols represent the MultiSTAAR-O P value of the gene using different 
functional categories. The red solid line is a 45° reference line. c, Manhattan 
plots for unconditional gene-centric noncoding analysis of protein-coding 
genes. The horizontal red dotted line indicates a genome-wide MultiSTAAR-O 
P value threshold of 3.57 × 10−7. The significant threshold is defined by multiple 
comparisons using the Bonferroni correction (0.05/20,000 × 7) = 3.57 × 10−7). 

Different symbols represent the MultiSTAAR-O P value of the protein-coding 
gene using different functional categories (upstream, downstream, UTR, 
promoter_CAGE, promoter_DHS, enhancer_CAGE, enhancer_DHS). Promoter_
CAGE and promoter_DHS are the promoters with overlap of CAGE sites and 
DHS sites for a given gene, respectively. Enhancer_CAGE and enhancer_DHS are 
the enhancers in GeneHancer-predicted regions with the overlap of CAGE sites 
and DHS sites for a given gene, respectively. d, Q–Q plots for unconditional 
gene-centric noncoding analysis of protein-coding genes. Different symbols 
represent the MultiSTAAR-O P value of the gene using different functional 
categories. e, Manhattan plot for unconditional gene-centric noncoding analysis 
of ncRNA genes. The horizontal line indicates a genome-wide MultiSTAAR-O 
P value threshold of 2.50 × 10−6. The significant threshold is defined by multiple 
comparisons using the Bonferroni correction (0.05/20,000 = 2.50 × 10−6). f, Q–Q 
plot for unconditional gene-centric noncoding analysis of ncRNA genes. In a, c 
and e, the chromosome numbers are indicated by the colors of dots. In all panels, 
MultiSTAAR-O is a two-sided test.
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variants, (6) upstream region rare variants, (7) downstream region rare 
variants of each protein-coding gene and (8) rare variants in noncod-
ing RNA (ncRNA) genes24. The promoter rare variants were defined 
as rare variants in the ±3-kb window of transcription start sites with 
the overlap of CAGE sites or DHS sites. The enhancer rare variants 
were defined as rare variants in GeneHancer-predicted regions with 

the overlap of CAGE sites or DHS sites. The UTR, upstream, down-
stream and ncRNA rare variants were defined by GENCODE VEP cat-
egories32. With a well-calibrated overall distribution of MultiSTAAR-O 
P values (Fig. 2d) and at a Bonferroni-corrected significance thresh-
old of α = 0.05/(20,000 × 7) = 3.57 × 10−7, accounting for seven differ-
ent noncoding masks across protein-coding genes, MultiSTAAR-O 
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identified 76 genome-wide significant associations using unconditional 
multi-trait analysis (Fig. 2c and Supplementary Table 6). After condi-
tioning on known lipids-associated variants26,37,38, six of the 76 associa-
tions remained significant at the Bonferroni-corrected threshold of 
α = 0.05/76 = 6.58 × 10−4 (Table 1). These included promoter CAGE and 
enhancer CAGE rare variants in APOA1, promoter DHS rare variants in 

CETP, enhancer CAGE rare variants in SPC24, and enhancer DHS rare 
variants in NIPSNAP3A and LIPC. All of these six conditionally significant 
associations were replicated with a conditional P < 6.58 × 10−4 using  
the UK Biobank WGS data (Table 1 and Methods).

MultiSTAAR-O further identified six genome-wide signi
ficant associations using unconditional multi-trait analysis at  

Table 1 | TOPMed gene-centric noncoding multi-trait analysis results of both unconditional analysis and analysis conditional 
on known lipids-associated variants

Gene Chr.a Categoryb Discovery (TOPMed) Replication (UK Biobank) Variantse (adjusted)

No. of 
SNVsc

MultiSTAAR-Od 
(unconditional)

MultiSTAAR-Od 
(conditional)

No. of 
SNVsc

MultiSTAAR-Od 
(unconditional)

MultiSTAAR-Od 
(conditional)

APOA1 11 Promoter  
(CAGE)

230 2.33 × 10−7 9.45 × 10−7 316 8.86 × 10−23 1.81 × 10−20 rs509728, rs61905072, 
rs66505542, rs7102314, 
rs964184, rs75198898, 
rs142958146, rs2075291, 
rs3135506, rs651821, 
rs45611741, rs662799, 
rs10750097, rs9804646, 
rs978880643, rs2070669, 
rs76353203, rs138326449, 
rs147210663, rs140621530, 
rs525028, rs141469619, 
rs188287950, rs202207736

CETP 16 Promoter  
(DHS)

411 1.21 × 10−12 5.75 × 10−4 533 6.65 × 10−32 2.24 × 10−4 rs35571500, rs247617, 
rs17231506, rs34498052, 
rs34119551, rs34065661, 
rs1597000001f, rs7499892, 
rs5883, rs289719, rs11860407, 
rs189866004, rs5880

APOA1 11 Enhancer  
(CAGE)

642 1.88 × 10−24 6.23 × 10−4 872 6.77 × 10−21 1.21 × 10−18 rs509728, rs61905072, 
rs66505542, rs7102314, 
rs964184, rs75198898, 
rs142958146, rs2075291, 
rs3135506, rs651821, 
rs45611741, rs662799, 
rs10750097, rs9804646, 
rs978880643, rs2070669, 
rs76353203, rs138326449, 
rs147210663, rs140621530, 
rs525028, rs141469619, 
rs188287950, rs202207736

SPC24 19 Enhancer 
(CAGE)

366 1.33 × 10−8 4.88 × 10−4 536 6.73 × 10−13 2.61 × 10−16 rs140753491, rs138294113, 
rs17242353, rs17242843, 
rs10422256, rs72658860, 
rs11669576, rs2738447, 
rs72658867, rs2738464, 
rs6511728, rs3760782, 
rs59168178, rs2278426, 
rs112942459

NIPSNAP3A 9 Enhancer 
(DHS)

767 2.63 × 10−8 8.46 × 10−6 1,031 1.70 × 10−4 7.13 × 10−6 rs2150867, rs33918808, 
rs112853430, rs4149307, 
rs9282541, rs1883025, 
rs1800978

LIPC 15 Enhancer 
(DHS)

3,714 4.26 × 10−8 1.25 × 10−4 5,073 1.48 × 10−8 9.04 × 10−6 rs1973688, rs1601935,
rs2043082, rs10468017,
rs1532085, rs436965, 
rs35980001, rs1800588, 
rs2070895, rs113298164

RP11-310H4.2 7 ncRNA 154 1.69 × 10−6 1.69 × 10−6 NA NA NA NAg

MIR4497 12 ncRNA 23 1.37 × 10−6 1.42 × 10−6 37 8.48 × 10−1 8.49 × 10−1 rs5800864

RP11-15F12.3 18 ncRNA 64 7.53 × 10−11 7.50 × 10−3 NA NA NA rs77960347, rs117623631, 
rs9958734, rs7229562, 
rs8086351, rs10048323, 
rs8084172

A total of 61,838 samples from the TOPMed Program were considered in the analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O P < 3.57 × 10−7 and conditional 
MultiSTAAR-O P < 6.58 × 10−4 for seven different noncoding masks across protein-coding genes; unconditional MultiSTAAR-O P < 2.50 × 10−6 and conditional MultiSTAAR-O P < 8.33 × 10−3 for 
ncRNA genes) are presented. MultiSTAAR-O is a two-sided test. NA, not available. aChromosome number. bFunctional category. cNumber of rare variants (MAF < 1%) of the particular noncoding 
functional category in the gene. dP value. eAdjusted variants in the conditional analysis. fSamoan-specific missense variant62. gNo variant adjusted in the conditional analysis.
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α = 0.05/20,000 = 2.50 × 10−6 accounting for ncRNA genes (Fig. 2e and  
Supplementary Table 6), with three rare variant associations in 
RP11-15F12.3, RP11-310H4.2 and MIR4497 remaining significant at 
α = 0.05/6 = 8.33 × 10−3 after conditioning on known lipids-associated 
variants26,37,38 (Table 1). Among these three conditionally significant 
associations, none was replicated with a conditional P < 8.33 × 10−3 
using the UK Biobank WGS data (Table 1 and Methods).

Notably, among the nine conditionally significant noncoding rare 
variants associations with lipid traits, four were not detected by any 
of the three single-trait analyses (LDL-C, HDL-C or TG) using uncon-
ditional analysis of STAAR-O, including the associations of enhancer 
DHS rare variants in NIPSNAP3A and LIPC as well as ncRNA rare variants 
in RP11-310H4.2 and MIR4497 (Supplementary Table 6). These results 
demonstrate that MultiSTAAR-O has increased power over existing 
methods, and identifies additional trait-associated signals by lever
aging cross-phenotype correlations between multiple traits.

Genetic-region multi-trait analysis of rare variants
We next applied MultiSTAAR-O to perform genetic-region multi-trait 
analysis to identify rare variants associated with lipid traits in TOPMed. 
Rare variants residing in 2-kb sliding windows with a 1-kb skip length 
were aggregated and analyzed using a joint model for LDL-C, HDL-C 
and TG. We incorporated 12 quantitative annotations, including 

nine aPCs, CADD, LINSIGHT and FATHMM-XF, along with the two 
MAF weights in MultiSTAAR-O (Methods). The overall distribution 
of MultiSTAAR-O P values was well-calibrated for the multi-trait 
analysis (Fig. 3b). At a Bonferroni-corrected significance threshold 
of α = 0.05/(2.65 × 106) = 1.89 × 10−8 accounting for 2.65 million 2-kb 
sliding windows across the genome, MultiSTAAR-O identified 502 
genome-wide significant associations using unconditional multi-trait 
analysis (Fig. 3a and Supplementary Table 7). By dynamically incor-
porating multiple functional annotations capturing different aspects 
of variant function, MultiSTAAR-O detected more significant sliding 
windows and showed consistently smaller P values for the top slid-
ing windows compared with multi-trait analysis using only MAFs as 
the weight (Fig. 3c). After conditioning on known lipids-associated 
variants26,37,38, seven of the 502 associations remained significant at the 
Bonferroni-corrected threshold of α = 0.05/502 = 9.96 × 10−5 (Table 2). 
Among these seven conditionally significant associations, six were 
replicated with a conditional P < 9.96 × 10−5 using the UK Biobank 
WGS data (Table 2 and Methods), including two sliding windows in 
DOCK7 (chromosome 1, 62,651,447–62,653,446 bp; chromosome 1, 
62,652,447–62,654,446 bp) and an intergenic sliding window (chro-
mosome 1, 145,530,447–145,532,446 bp) that were not detected by any 
of the three single-trait analyses (LDL-C, HDL-C or TG) using STAAR-O 
(Supplementary Table 7). Notably, all known lipids-associated variants 
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Fig. 3 | TOPMed genetic-region (2-kb sliding window) unconditional multi-
trait analysis results for LDL-C, HDL-C and TG using TOPMed data (n = 61,838). 
a, Manhattan plot showing the associations of 2.65 million 2-kb sliding windows 
versus −log10P of MultiSTAAR-O. The horizontal red dotted line indicates a 
genome-wide P value threshold of 1.89 × 10−8. b, Q–Q plot of 2-kb sliding window 
MultiSTAAR-O P values. c, Scatterplot of P values for the 2-kb sliding windows 

comparing MultiSTAAR-O with burden-MT, SKAT-MT and ACAT-V-MT tests (MT, 
multi-trait). Each dot represents a sliding window, with the x-axis label being the 
−log10P of the conventional multi-trait test and the y-axis label being the −log10(P) 
of MultiSTAAR-O. Burden-MT, SKAT-MT, ACAT-V-MT and MultiSTAAR-O are two-
sided tests. Int*, intergenic sliding window.
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indexed in the previous literature were at least 1 Mb away from the 
intergenic sliding window.

Comparison of MultiSTAAR-O with existing methods
Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis 
of coding rare variants identified 34 conditionally significant associa-
tions with lipid traits (Supplementary Table 5), including NPC1L1 and 

SCARB1 missense rare variants that were missed by multi-trait burden, 
SKAT and ACAT-V tests (Supplementary Table 4). Among the nine and 
seven conditionally significant associations detected in gene-centric 
multi-trait analyses of noncoding rare variants and genetic-region 
multi-trait analysis, MultiSTAAR-O identified one and two associa-
tions, respectively, that were missed by the multi-trait burden, SKAT 
and ACAT-V tests (Supplementary Tables 6 and 7). These associations 

Table 2 | TOPMed genetic-region (2-kb sliding window) multi-trait analysis results of both unconditional analysis and 
analysis conditional on known lipid-associated variants

Chr.a Start 
locationb

End locationc Gene Discovery (TOPMed) Replication (UK Biobank) Variantsf  
(adjusted)

No. of 
SNVsd

MultiSTAAR-Oe 

(unconditional)
MultiSTAAR-Oe 
(conditional)

No. of 
SNVsd

MultiSTAAR-Oe 
(unconditional)

MultiSTAAR-Oe 
(conditional)

1 55,051,447 55,053,446 PCSK9 327 7.11 × 10−11 6.60 × 10−8 458 1.90 × 10−35 3.75 × 10−41 rs12117661,  
rs2495491,  
rs11591147,  
rs67608943,  
rs72646508,  
rs693668,  
rs28362261,  
rs28362263,  
rs141502002,  
rs505151,  
rs28362286

1 55,052,447 55,054,446 PCSK9 320 9.37 × 10−9 9.07 × 10−6 442 5.28 × 10−37 4.01 × 10−41 rs12117661,  
rs2495491,  
rs11591147,  
rs67608943,  
rs72646508,  
rs693668,  
rs28362261,  
rs28362263,  
rs141502002,  
rs505151,  
rs28362286

1 62,651,447 62,653,446 DOCK7 277 5.08 × 10−9 7.56 × 10−10 396 1.51 × 10−41 7.74 × 10−45 rs67461605

1 62,652,447 62,654,446 DOCK7 257 4.87 × 10−9 7.24 × 10−10 357 9.59 × 10−42 4.93 × 10−45 rs67461605

1 145,530,447 145,532,446 intergenic 233 5.12 × 10−9 5.12 × 10−9 386 4.54 × 10−28 4.54 × 10−28 NAg

19 11,104,367 11,106,366 LDLR 336 1.15 × 10−12 8.33 × 10−13 437 9.84 × 10−5 2.11 × 10−5 rs140753491,  
rs138294113,  
rs17242353,  
rs17242843,  
rs10422256,  
rs72658860,  
rs11669576,  
rs2738447,  
rs72658867,  
rs2738464,  
rs6511728,  
rs3760782,  
rs59168178,  
rs2278426,  
rs112942459

19 11,105,367 11,107,366 LDLR 338 5.97 × 10−14 5.55 × 10−15 480 4.51 × 10−4 2.54 × 10−3 rs140753491,  
rs138294113,  
rs17242353,  
rs17242843,  
rs10422256,  
rs72658860,  
rs11669576,  
rs2738447,  
rs72658867,  
rs2738464,  
rs6511728,  
rs3760782,  
rs59168178,  
rs2278426,  
rs112942459

A total of 61,838 samples from the TOPMed Program were considered in the analysis. Results for the conditionally significant sliding windows (unconditional MultiSTAAR-O P < 1.89 × 10−8 and 
conditional MultiSTAAR-O P < 9.96 × 10−5) are presented. MultiSTAAR-O is a two-sided test. aChromosome number. bStart location of the 2-kb sliding window. cEnd location of the 2-kb sliding 
window. dNumber of rare variants (MAF < 1%) in the 2-kb sliding window. eP value. fAdjusted variants in the conditional analysis. gNo variant adjusted in the conditional analysis. Physical positions 
of each window are on build NCBI GRCh38/UCSC hg38.
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included enhancer CAGE rare variants in SPC24 and two sliding windows 
in LDLR (chromosome 19, 11,104,367–11,106,366 bp; chromosome 19, 
11,105,367–11,107,366 bp).

Analysis of non-lipid phenotypes in the TOPMed WGS data
We further applied MultiSTAAR to analyzing a broader spectrum of phe-
notypes in the TOPMed WGS data, including (1) multi-trait analysis of 
fasting glucose (FG) and fasting insulin (FI) (n = 21,731)43 and (2) multi-trait 
analysis of four inflammation biomarkers (C-reactive protein (CRP), 
interleukin-6 (IL-6), lipoprotein-associated phospholipase A2 (Lp-PLA2) 
activity and lipoprotein-associated phospholipase A2 (Lp-PLA2) mass 
(n = 9,380)44). Similar to the lipids analysis, for each multi-trait anal-
ysis we performed gene-centric coding and noncoding analysis and 
genetic-region analysis to detect rare variant associations (Methods).

In gene-centric coding unconditional analysis, MultiSTAAR identi-
fied seven and seven genome-wide significant associations for glycemic 
and inflammation biomarker analyses, respectively. Seven and four 
associations remained significant at the Bonferroni-corrected level 
α = 0.05/7 = 7.14 × 10−3 after conditioning on known phenotype-specific 
variants24,43,44 (Supplementary Tables 8 and 9 and Extended Data 
Figs. 1a,b and 2a,b). In gene-centric noncoding unconditional analy-
sis, MultiSTAAR identified six genome-wide significant associations 
for inflammation biomarker analysis, but no association remained 
significant at the Bonferroni-corrected level α = 0.05/6 = 8.33 × 10−3 
after conditioning on known phenotype-specific variants24,43,44 (Sup-
plementary Table 10 and Extended Data Fig. 2c,d).

In genetic-region unconditional analysis using 2-kb sliding win-
dows, MultiSTAAR identified 41 genome-wide significant associations 
for inflammation biomarker analysis, and two associations remained 
significant at the Bonferroni-corrected level α = 0.05/41 = 1.22 × 10−3 
after conditioning on known phenotype-specific variants24,43,44 (Sup-
plementary Table 11 and Extended Data Fig. 2e,f). No genome-wide 
significant associations were identified in gene-centric noncoding and 
genetic-region analyses for glycemic analysis (Extended Data Fig. 1c–f).

Computation cost
The computational cost for MultiSTAAR-O to perform WGS multi-trait 
rare variant analysis of n = 61,838 related TOPMed lipids samples was 
2 h using 250 2.10-GHz computing cores with 12 GB of memory for 
gene-centric coding analysis; 20 h using 250 2.10-GHz computing cores 
with 24 GB of memory for gene-centric noncoding analysis; 2 h using 
250 2.10-GHz computing cores with 12 GB of memory of ncRNA analysis; 
and 20 h using 500 2.10-GHz computing cores with 24 GB of memory 
for sliding-window analysis. The runtime for all analyses scaled linearly 
with sample size24.

Discussion
In this Article we have introduced MultiSTAAR as a general statistical 
framework and a flexible analytical pipeline for performing function-
ally informed multi-trait RVAS in large-scale WGS studies. By jointly 
analyzing multiple quantitative traits using an MLMM in the first step, 
MultiSTAAR explicitly leverages the correlation among multiple phe-
notypes to enhance the power for detecting additional association 
signals, outperforming single-trait analyses of the individual phe-
notypes. MultiSTAAR also enables conditional multi-trait analysis to 
identify putatively novel rare variant associations independent of a set 
of known variants. Using TOPMed Freeze 8 WGS data, our gene-centric 
multi-trait analysis of noncoding rare variants identified nine condi-
tionally significant associations with lipid traits (Table 1), including 
four noncoding associations that were missed by single-trait analysis 
using STAAR (Supplementary Table 6). Our genetic-region multi-trait 
analysis of rare variants identified seven conditionally significant 2-kb 
sliding windows associated with lipid traits (Table 2), including three 
associations that were missed by single-trait analysis using STAAR 
(Supplementary Table 7).

Among the seven associations that were conditionally signifi-
cant in multi-trait analysis but missed by single-trait analysis, five 
of them were replicated using the UK Biobank WGS data of 170,104 
samples (Tables 1 and 2), including the associations of enhancer DHS 
rare variants in NIPSNAP3A and LIPC, and the associations of two slid-
ing windows in DOCK7 (chromosome 1, 62,651,447–62,653,446 bp; 
chromosome 1, 62,652,447–62,654,446 bp) and an intergenic slid-
ing window (chromosome 1, 145,530,447–145,532,446 bp). Previous 
research has demonstrated that both common and rare coding variants 
in these genes are associated with lipid levels45–47. Our findings extend 
this understanding by suggesting that rare noncoding variants may 
also contribute to alterations in lipid levels. These results demonstrate 
the robustness of the MultiSTAAR method.

We additionally performed three double-trait analyses of these 
seven results. The association of ncRNA rare variants in RP11-310H4.2 
was also missed by double-trait analysis using MultiSTAAR. The remain-
ing six results were detected by at least one of the double-trait analyses, 
though not consistently by the same analysis (Supplementary Tables 6 
and 7). This observation highlights the complexity of pleiotropic effects 
in multi-trait analyses. We also applied MultiSTAAR to non-lipid phe-
notypes in the TOPMed WGS data by conducting multi-trait analyses 
for two glycemic traits and four inflammation biomarker traits. The 
quantile–quantile (Q–Q) plots were well-calibrated for all analyses, 
demonstrating the validity of MultiSTAAR for use at genome-wide 
significance levels (Extended Data Figs. 1b,d,f and 2b,d,f).

Our gene-centric analysis primarily focuses on detecting asso-
ciations within coding and regulatory regions of protein-coding and 
ncRNA genes. Complementing this, our agnostic genetic-region 
analysis employs sliding windows, and focuses on detecting associa-
tions in intergenic regions, a supplementary approach to gene-centric 
analysis. The sliding-window approach covers all variants across the 
genome, including those that are not used in gene-centric analysis, 
such as the noncoding variants that are not in the estimated promo
ters and enhancers of protein-coding genes. Although there is some 
overlap in that both analyses include coding and regulatory regions, the 
gene-centric method incorporates categorical functional annotations of 
protein-coding genes that define analysis units for the analysis, and the 
non-gene-centric method defines analysis units using sliding windows.

Among the five new lipid trait associations identified using 
MultiSTAAR-O, which were conditionally significant in our three-trait 
analyses but undetected in single-trait analysis using TOPMed data and 
replicated using UK Biobank data, two were detected by gene-centric 
analysis and three by sliding-window analysis. Notably, the associations 
identified by these two approaches do not overlap, underscoring the 
distinct yet complementary nature of the approaches.

By dynamically incorporating multiple annotations capturing 
diverse aspects of variant biological function in the second step, 
MultiSTAAR further improves the power over existing multi-trait rare 
variant analysis methods. Our simulation studies demonstrated that 
MultiSTAAR-O maintained accurate type I error rates at genome-wide 
significance levels while achieving considerable power gains over 
multi-trait burden, SKAT and ACAT-V tests, which do not incorporate 
functional annotation information (Supplementary Table 1 and Sup-
plementary Figs. 1–32). Notably, the existing ACAT-V method9 does not 
support multi-trait analysis. We extended it to accommodate multi-trait 
settings and incorporated the multi-trait ACAT-V test into the Multi-
STAAR framework (Methods).

Implemented as a flexible analytical pipeline, MultiSTAAR allows 
for customized input phenotype selection, variant set definition and 
user-specified annotation weights to facilitate functionally informed 
multi-trait analyses. In practice, we recommend utilizing a biological 
knowledge-based approach to define trait groups, as it ensures a bio-
logically meaningful interpretation. Alternately, users could adopt a 
data-driven approach where traits are clustered based on their correlation 
matrix and subsequently grouped using clustering or similar methods.
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In addition to rare variant association analysis of coding and non-
coding regions, MultiSTAAR also provides multi-trait single-variant 
analysis for common and low-frequency variants under a given MAF 
or minor allele count (MAC) cutoff (for example, MAC ≥ 20). We per-
formed single-variant analysis of three lipid traits of 61,838 TOPMed 
samples using MultiSTAAR (Supplementary Fig. 33 and Supplemen-
tary Table 12). It took 8 h using 250 2.10-GHz computing cores with 
12 GB of memory for multi-trait single-variant analysis of all genetic  
variants with MAC ≥ 20 (72,762,611 in total), which is scalable for large 
WGS/WES datasets.

There are several limitations to this study. First, MultiSTAAR per-
forms sliding-window analysis with fixed sizes and could be further 
developed to allow for dynamic windows with data-adaptive sizes in 
genetic-region analysis using SCANG-STAAR24,48. Second, MultiSTAAR 
could be improved to properly leverage synthetic surrogates in the 
presence of partially missing phenotypes49. Third, MultiSTAAR is cur-
rently designed for analyzing individual-level genotype and phenotype 
data, which could be extended to incorporate summary statistics for 
meta-analyses of multiple WGS/WES studies50.

Despite these limitations, MultiSTAAR provides a powerful sta-
tistical framework and a computationally scalable analytical pipeline 
for large-scale WGS multi-trait analysis with complex study samples. 
As the sample sizes and number of available phenotypes increase 
in biobank-scale sequencing studies, our proposed method may 
contribute to a better understanding of the genetic architecture 
of complex traits by elucidating the role of rare variants with pleio-
tropic effects.

Methods
Ethics statement
This study relied on analyses of genetic data from TOPMed cohorts. 
The study has been approved by the TOPMed Publications Com-
mittee, TOPMed Lipids Working Group and all participating 
cohorts, including Old Order Amish (phs000956.v1.p1), Athero-
sclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe 
Biobank (phs001644), Coronary Artery Risk Development in 
Young Adults (phs001612), Cleveland Family Study (phs000954), 
Cardiovascular Health Study (phs001368), Diabetes Heart Study 
(phs001412), Framingham Heart Study (phs000974), Genetic Study of  
Atherosclerosis Risk (phs001218), Genetic Epidemiology Network 
of Arteriopathy (phs001345), Genetic Epidemiology Network of 
Salt Sensitivity (phs001217), Genetics of Lipid Lowering Drugs and 
Diet Network (phs001359), Hispanic Community Health Study—
Study of Latinos (phs001395), Hypertension Genetic Epidemio
logy Network and Genetic Epidemiology Network of Arteriopathy 
(phs001293), Jackson Heart Study (phs000964), Multi-Ethnic Study 
of Atherosclerosis (phs001416), San Antonio Family Heart Study 
(phs001215), Genome-wide Association Study of Adiposity in Samo-
ans (phs000972), Taiwan Study of Hypertension using Rare Variants 
(phs001387) and Women’s Health Initiative (phs001237) (accession 
numbers are provided in parentheses). The use of human genetics 
data from TOPMed cohorts was approved by the Harvard T.H. Chan 
School of Public Health IRB (IRB13-0353).

Notation and model
Suppose there are n subjects with a total of M variants sequenced across 
the whole genome. For the ith subject, let Yi = (yi1, yi2, …, yiK)T denotes 
a vector of K quantitative phenotypes; Xi = (xi1, xi2, …, xiq)T denotes q 
covariates, such as age, gender and ancestral PCs; Gi = (Gi1, Gi2, …, Gip)T 
denotes the genotype matrix of the p genetic variants in a variant set. 
Because these K phenotypes may be defined on different measurement 
scales, we assume that each phenotype has been rescaled to have zero 
mean and unit variance.

When the data consist of unrelated samples, we consider the  
following multivariate linear model (MLM):

Yi =
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⋮
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α0, 1 + XT
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i β1
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⋮

α0,K + XT
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i βK
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⎥
⎦
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εi1
εi2
⋮
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⎥
⎥
⎥
⎥
⎥
⎦

(1)

where α0, k is an intercept, αk = (α1, k, α2, k, …, αq, k)T and βk = (β1, k,  
β2, k, …, βq, k)T are column vectors of regression coefficients for 
covariates Xi and genotype Gi in phenotype k, respectively. The error  
terms εi = (εi1, εi2, …, εiK)T are independent and identically distributed 
and follow a multivariate normal distribution with the mean a vec-
tor of zeros and variance-covariance matrix ΣK × K, assumed identical 
for all subjects. For all n subjects, using matrix notation we can write 
model (1) as

Yn×K = 1nαT
0 + Xn×qαq×K + Gn×pβp×K + εn×K (2)

where 1n is a column vector of 1s of length n, α0 = (α0, 1, α0, 2, …,  
α0, K)T is a column vector of regression intercepts, the kth  
columns of αq × K and βp × K are αk and βk, respectively, and εn×K = 
(ε1, ε2, … , εn)

T ∼ MatrixNormaln,K (0n×K, In×n, ΣK×K)  follows a matrix  
normal distribution. We calculate the scaled residual for each subject 
on each phenotype, defined as ên×K = (Yn×K − μ̂n×K) Σ̂−1K×K , where μ̂n×K   
(a matrix of fitted values) and Σ̂K×K  are estimated under the null MLM 
Yn×K = 1nαT

0 + Xn×qαq×K + εn×K , where no variant has any effect on any 
phenotype.

When the data consist of related samples, we consider the follow-
ing MLMM19,51,52:
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(3)

where the random effects biK account for relatedness and remaining 
population structure unaccounted by ancestral PCs20. We assume that 
bn×K = (biK)n×K ∼ MatrixNormaln,K (000n×K, Φn×n, ΘK×K)  with a variance 
component matrix ϴK×K and a sparse genetic relatedness matrix Φn×n 
(refs. 21,22). For all n subjects, using matrix notation we can rewrite 
equation (3) as

Yn×K = 1nαT
0 + Xn×qαq×K + Gn×pβp×K + bn×K + εn×K (4)

We calculate the scaled residual for each subject on each pheno-
type, defined as ên×K = (Yn×K − μ̂n×K) Σ̂−1K×K , where μ̂n×K  and Σ̂K×K  are  
estimated under the null MLMM Yn×K = 1nαT

0 + Xn×qαq×K + bn×K + εn×K .  
Under both MLM and MLMM, our goal is to test for an association 
between a set of p genetic variants and K quantitative phenotypes, 
adjusting for covariates and relatedness. This corresponds to testing 
H0 ∶ β1 = β2 = ⋯ = βK = 0.

Multi-trait rare variant association tests using MultiSTAAR
Single-trait score-based aggregation methods5–9 can be extended to 
allow for jointly testing the association between rare variants in a vari-
ant set and multiple quantitative phenotypes. For a given variant set, 
let Sp×K = (Sjk)p×K = (Gn×p)

Tên×K  denote the matrix of score statistics, 
where Sjk is the score statistic for the jth variant on the kth phenotype. 
For the multi-trait burden test using MultiSTAAR (Burden-MT), we 
consider the test statistic

QBurden-MT = (
p
∑
j=1

w jSj⋅) V̂−1(
p
∑
j=1

w jSj⋅)
T
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where wj is the weight defined as a function of the MAF for the jth 
variant4,18, Sj⋅ = (S j1, S j2, … , SjK) is the jth row of S and V̂ is the estimated 

variance-covariance matrix of 
p
∑
j=1

w jSj⋅ = wwwTS. QBurden-MT asymptotically 

follows a standard χ2 distribution with K degrees of freedom under  
the null hypothesis, and its P value can be obtained analytically while 
accounting for the linkage disequilibrium (LD) between variants and 
the correlation between phenotypes.

For multi-trait SKAT using MultiSTAAR (SKAT-MT), we consider 
the test statistic

QSKAT-MT =
K
∑
k=1

p
∑
j=1

w2
jS

2
jk

QSKAT-MT asymptotically follows a mixture of χ2 distributions under 
the null hypothesis, and its P value can be obtained analytically while 
accounting for the LD between variants and the correlation between 
phenotypes14,15.

For multi-trait ACAT-V using MultiSTAAR (ACAT-V-MT), we propose 
the test statistic

QACAT-V-MT = w2MAF (1 −MAF) tan ((0.5 − p0)π)

+
p′

∑
j=1

w2
jMAFj (1 −MAFj) tan ((0.5 − p j)π)

where p′ is the number of variants with MAC > 10, and pj is the multi- 
trait association P value of individual variant j for those variants with 
MAC > 10 whose test statistic is given by the K degrees of freedom 
multivariate score test

Q j = Sj⋅V̂−1
Sj⋅
ST
j⋅

where V̂Sj⋅ is the estimated variance-covariance matrix of Sj⋅; p0 is the 
multi-trait burden test P value of extremely rare variants with MAC ≤ 10 
as described above, and w2MAF (1 −MAF)  is the average of the weights 
w2

jMAFj (1 −MAFj)  among the extremely rare variants with MAC ≤ 10. 
QACAT-V-MT is approximated well by a scaled Cauchy distribution under 
the null hypothesis, and its P value can be obtained analytically while 
accounting for the LD between variants and the correlation between 
phenotypes9,53. Note that when K = 1, the multi-trait burden, SKAT and 
ACAT-V tests reduce to the original single-trait burden, SKAT and 
ACAT-V tests.

Suppose we have a collection of L annotations, then let Ajl denote 
the lth annotation for the jth variant in the variant set. We define the 
functionally informed multi-trait burden, SKAT and ACAT-V test statis-
tics weighted by the lth annotation as follows:

QBurden-MT, l, (a1 ,a2) = (
p
∑
j=1

π̂jlw j, (a1 ,a2)
Sj⋅) V̂−1

l, (a1 ,a2)
(

p
∑
j=1

π̂jlw j, (a1 ,a2)
Sj⋅)

T

QSKAT-MT, l, (a1 ,a2) =
K
∑
k=1

p
∑
j=1

π̂jlw2
j, (a1 ,a2)

S2jk

QACAT-V-MT, l, (a1 ,a2) = π̂⋅lw2
(a1 ,a2)

MAF (1 −MAF) tan ((0.5 − p0, l)π)

+
M′

∑
j=1

π̂jlw2
j, (a1 ,a2)

MAFj (1 −MAFj) tan ((0.5 − p j)π)

where π̂jl =
rank(Ajl)

M
,  w j, (a1 ,a2) = Beta (MAFj; a1, a2)  with (a1, a2) ∈𝒜𝒜  

= {(1.25), (1, 1)}, V̂l, (a1 ,a2) is the estimated variance-covariance matrix of 
∑p

j=1 π̂jlw j, (a1 ,a2)
Sj⋅ , and π̂⋅lw2

(a1 ,a2)
MAF (1 −MAF)  is the average of the 

weights π̂jlw2
j, (a1 ,a2)

MAFj (1 −MAFj) among the extremely rare variants 
with MAC ≤ 10.

For each type of rare variant test, we define MultiSTAAR-B, 
MultiSTAAR-S and MultiSTAAR-A to incorporate multiple functional 
annotations through the STAAR framework for multi-trait burden, 
SKAT and ACAT-V as

TMultiSTAAR−B(a1 ,a2) =
L
∑
l=0

tan {(0.5 − pBurden−MT, l, (a1 ,a2))π}
L + 1

TMultiSTAAR−S(a1 ,a2) =
L
∑
l=0

tan {(0.5 − pSKAT-MT, l, (a1 ,a2))π}
L + 1

TMultiSTAAR−A(a1 ,a2) =
L
∑
l=0

tan {(0.5 − pACAT-V-MT, l, (a1 ,a2))π}
L + 1

where TMultiSTAAR-B(1, 1), TMultiSTAAR-S(1, 25) and TMultiSTAAR-A(1, 25) are the test statis-
tics of MultiSTAAR-B, MultiSTAAR-S and MultiSTAAR-A, respectively. 
The P values of TMultiSTAAR-B(a1 ,a2), TMultiSTAAR-S(a1 ,a2) and TMultiSTAAR-A(a1 ,a2) can 
be calculated by

PMultiSTAAR-B(a1 ,a2) =
1
2 −

{arctan (TMultiSTAAR-B(a1 ,a2))}
π

PMultiSTAAR-S(a1 ,a2) =
1
2 −

{arctan (TMultiSTAAR-S(a1 ,a2))}
π

PMultiSTAAR-A(a1 ,a2) =
1
2 −

{arctan (TMultiSTAAR-A(a1 ,a2))}
π

Finally, we define the omnibus MultiSTAAR-O test statistic as

TMultiSTAAR-O = 1
3|𝒜𝒜|

∑(a1 ,a2)∈𝒜𝒜 [TMultiSTAAR-B(a1 ,a2)

+TMultiSTAAR-S(a1 ,a2) + TMultiSTAAR-A(a1 ,a2)]

= 1
3|𝒜𝒜|

∑(a1 ,a2)∈𝒜𝒜

L
∑
l=0

[ tan{(0.5−pBurden-MT, l, (a1 ,a2 ))π}
L+1

+ tan{(0.5−pSKAT-MT, l, (a1 ,a2 ))π}
L+1

+ tan{(0.5−pACAT-V-MT, l, (a1 ,a2 ))π}
L+1

] ,

and the P value of TMultiSTAAR-O can be calculated by

PMultiSTAAR-O = 1
2 − {arctan (TMultiSTAAR-O)}

π

MultiSTAAR-O integrates different types of test into an omnibus 
approach to achieve robust power with respect to the sparsity of causal 
variants and the directionality of effects of causal variants in a variant 
set. Specifically, by including Burden-MT, MultiSTAAR-O is powerful 
when most variants in a variant set are causal and have effects in the 
same direction; by including SKAT-MT, MultiSTAAR-O is powerful when 
not a small number of variants in a variant set are causal with effects in 
different directions, or when variants in a variant set are in high linkage 
disequilibrium; by including ACAT-V-MT, MultiSTAAR-O is powerful 
when a small number of variants in a variant set are causal or a good 
number of extremely rare variants are causal. By incorporating multiple 
functional annotations, MultiSTAAR-O is powerful when any of these 
functional annotations can pinpoint causal variants.

Data simulation
Type I error rate simulations. We performed simulation studies to 
evaluate how accurately MultiSTAAR controls the type I error rate. 
We generated three quantitative traits from a MLM, conditional on 
two covariates:

http://www.nature.com/natcomputsci
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where Xi1 ∼ N (0, 1) , Xi2 ∼ Bernoulli (0.5) and
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where MVN denotes a multivariate normal distribution. The correlation 
matrix of error terms εεεi = (εi1, εi2, εi3)

T was chosen to mimic the corre
lations between three lipid traits, LDL-C, HDL-C and TG, estimated from 
the TOPMed data26. We considered a sample size of 10,000 and gener-
ated genotypes by simulating 20,000 sequences for 100 different 
regions each spanning 1 Mb. The data generation used the calibration 
coalescent model (COSI)29 with parameters set to mimic the LD struc-
ture of African Americans. In each simulation replicate, ten annotations 
were generated as A1, …, A10, all independently and identically distrib-
uted as N(0, 1) for each variant, and we randomly selected 5-kb regions 
from these 1-Mb regions for type I error rate simulations. We applied 
MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O by 
incorporating MAFs and the ten annotations together with the 
Burden-MT, SKAT-MT and ACAT-V-MT tests. We repeated the procedure 
with 108 replicates to examine the type I error rate at levels α = 10−4,  
10−5 and 10−6.

Empirical power simulations. We next carried out simulation studies 
under a variety of configurations to assess the power of MultiSTAAR-O 
and how its incorporation of multiple functional annotations affects 
the power compared to the multi-trait burden, SKAT and ACAT-V tests 
implemented in MultiSTAAR. In each simulation replicate, we randomly 
selected 5-kb regions from a 1-Mb region for power evaluations. For 
each selected 5-kb region, we generated three quantitative traits from 
an MLM:
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where X1i, X2i and εεεi are defined as in the type I error rate simulations, 
Gi = (Gi1, Gi2, …, Gip)T and βk = (β1, k, β2, k, …, βp, k)T are the genotypes  
and effect sizes of the p genetic variants in the signal region.

The genetic effect of variant j on phenotype k was defined as 
βj, k = cjdkγj to allow for heterogeneous effect sizes among variants and 
phenotypes. Specifically, we generated the causal variant indicator cj 
according to a logistic model:

logitP (c j = 1) = δ0 + δl1A j, l1 + δl2A j, l2 + δl3A j, l3 + δl4A j, l4 + δl5A j, l5

where {l1, ⋯ , l5} ⊂ {1, ⋯ , 10} were randomly sampled for each region. 
For different regions, the causality of variants depended on different 
sets of annotations. We set δl⋅ = log (5) for all annotations and varied 
the proportions of causal variants in the signal region by setting 
δ0 = logit(0.0015), logit(0.015) and logit(0.18), which correspond to 
averaging 5%, 15% and 35% causal variants in the signal region, respec-
tively. We considered four scenarios of phenotypic indicator dk that 
reflect different underlying genetic architectures across phenotypes: 
(d1, d2, d3) = (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1). These correspond to 
causal variants in the signal region being associated with (1) one phe-
notype only, (2) two positively correlated phenotypes, (3) two nega-
tively correlated phenotypes and (4) all three phenotypes. We modeled 

the absolute effect sizes of causal variants using |γj| = c0|log10MAFj|, 
such that it was a decreasing function of MAF. c0 was set to be 0.13, 0.1, 
0.1 and 0.07, respectively, to ensure a decent power of tests under each 
scenario. We additionally varied the proportions of causal variant effect 
size directions (signs of γj) by randomly generating 100%, 80% and 50% 
variants on average to have positive effects. We applied MultiSTAAR-B, 
MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O using MAFs and  
all ten annotations together with the Burden-MT, SKAT-MT and 
ACAT-V-MT tests. We repeated the procedure with 104 replicates to 
examine the power at level α = 10−7. The sample size was 10,000 across 
all scenarios.

To assess how different correlation structures between pheno-
types influence the enhancement of statistical power, we conducted 
additional power simulation studies, including (1) independent, by 
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; (2) low phenotypic correlation, 
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; and (3) high phe-
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. 

For each correlation structure, the causal variant proportions and 
causal variant effect sizes were considered the same as previous power 
simulation studies. Our simulation results demonstrate that Multi-
STAAR achieves robust and considerable power gain in identifying 
pleiotropic loci across all correlation structures compared with existing 
multi-trait analysis methods (Supplementary Figs. 9–32).

Computational cost benchmarking. We benchmarked the compu-
tational cost of MultiSTAAR along with (1) the number of traits and (2) 
the sample size using simulation studies. Specifically, for (1), we varied 
the number traits among 2, 3, 4 and 5 while considering the sample 
size at 10,000 and randomly selecting 5-kb regions. For (2), we varied 
the sample sizes among 10,000, 20,000, 30,000, 40,000 and 50,000 
while considering three traits and randomly selecting regions with 150 
variants. Computational time was benchmarked by averaging over 
10,000 simulation replicates. Our benchmarking results show that 
for both the null model fitting step and the MultiSTAAR testing step, 
the computational time increased approximately quadratically with 
the number of traits, and the computational time increased approxi-
mately linearly with the sample size (Supplementary Figs. 34 and 35). 
All analyses were completed with less than 2 GB of memory.

Lipid traits
Conventionally measured plasma lipids, including LDL-C, HDL-C and 
TGs, were included for analysis. LDL-C was either calculated by the 
Friedewald equation when TG levels were <400 mg dl−1 or directly 
measured. Given the average effect of statins, when statins were 
present, LDL-C was adjusted by dividing by 0.7. Triglycerides were 
natural-log-transformed for analysis. Phenotypes were harmonized 
by each cohort and deposited into the dbGaP TOPMed Exchange Area.

Multi-trait analysis of lipids in the TOPMed WGS data
The TOPMed WGS data consist of multi-ethnic related samples1. Race/
ethnicity was defined using a combination of self-reported race/ethnic-
ity from participant questionnaires and study recruitment informa-
tion (Supplementary Note)31. A plot of ancestry PCs was presented to 
illustrate the genetic diversity among the populations studied (Sup-
plementary Fig. 36). In this study, we applied MultiSTAAR to perform 
multi-trait rare variant analysis of three quantitative lipid traits (LDL-C, 
HDL-C and TG) using 20 study cohorts from the TOPMed Freeze 8 WGS 
data. LDL-C was adjusted for the presence of medications as before30. 
For each study, we first fit a linear regression model adjusting for age, 
age2 and sex for each race/ethnicity-specific group. In addition, for 
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Old Order Amish (OOA), we also adjusted for APOB p.R3527Q in LDL-C 
analysis and adjusted for APOC3 p.R19Ter in TG and HDL-C analyses30. 
The covariate distributions of samples with and without missing lipid 
traits are similar (Supplementary Fig. 37), indicating that data are 
plausibly missing at random.

Total cholesterol (TC) was not included in the multi-trait analysis 
based on the Friedewald equation TC ≈ LDL-C + HDL-C + TG/5. Given 
that TC is a linear combination of LDL-C, HDL-C and TG, it does not 
provide additional biological information when LDL-C, HDL-C and TG 
are already included in the model.

We performed rank-based inverse-normal transformation of the 
residuals of LDL-C, HDL-C and TG within each race/ethnicity-specific 
group. We then fit a MLMM for the rank-normalized residuals, adjusting 
for 11 ancestral PCs, ethnicity group indicators and a variance compo-
nent for empirically derived sparse kinship matrix to account for popu-
lation structure, relatedness and correlation between phenotypes.

We next applied MultiSTAAR-O to perform multi-trait variant 
set analyses for rare variants (MAF < 1%) by scanning the genome, 
including gene-centric analysis of each protein-coding gene using 
five coding variant functional categories (putative loss-of-function 
rare variants, missense rare variants, disruptive missense rare vari-
ants, putative loss-of-function and disruptive missense rare variants 
and synonymous rare variants); seven noncoding variant functional 
categories (promoter rare variants overlaid with CAGE sites, promoter 
rare variants overlaid with DHS sites, enhancer rare variants overlaid 
with CAGE sites, enhancer rare variants overlaid with DHS sites, UTR 
rare variants, upstream region rare variants, downstream region rare 
variants) and rare variants in ncRNA genes; and genetic-region analysis 
using 2-kb sliding windows across the genome with a 1-kb skip length.

Our analysis revealed that MultiSTAAR-O detected 325 signifi-
cant associations that were missed by both existing multi-trait-based 
methods Burden-MT and SKAT-MT. Conversely, Burden-MT identified 
four and SKAT-MT identified 11 significant associations not detected 
by MultiSTAAR-O (Supplementary Fig. 38). This demonstrates the 
robust power of MultiSTAAR-O, particularly in handling the sparsity and 
directionality of causal variant effects through an integrated omnibus 
approach.

The WGS multi-trait rare variant analysis was performed using the 
R packages MultiSTAAR (version 0.9.7, https://github.com/xihaoli/Multi 
STAAR)54 and STAARpipeline (version 0.9.7, https://github.com/xihaoli/ 
STAARpipeline)55. The WGS rare variant single-trait analysis of LDL-C,  
HDL-C and TG was performed using the R packages STAAR (version  
0.9.7, http://github.com/xihaoli/STAAR)56 and STAARpipeline (version  
0.9.7)55. Both multi-trait and single-trait analyses results were sum-
marized and visualized using the R package STAARpipelineSummary 
(version 0.9.7, https://github.com/xihaoli/STAARpipelineSummary)57.

Multi-trait analysis of lipids in the UK Biobank WGS data
We used pVCF format files for the WGS data of 200,004 UK Biobank 
participants (UK Biobank Field #24304) and followed the same QC 
procedure as in a previous study of UK Biobank WGS data3. We kept all 
variants with a pass indicated by QC label and AAScore greater than 0.5, 
where AAScore was generated by GraphTyper, the software used by the 
UK Biobank to perform genotype calling. We harmonized three lipid 
traits (LDL-C, HDL-C and TG) of the UK Biobank WGS data. For LDL-C, 
we excluded individuals with LDL-C < 10 mg dl−1 or TG > 400 mg ml−1. 
LDL-C was then adjusted by dividing the value by 0.7 among individu-
als reporting lipid-lowering medication use or statin use at any time 
point. TG levels were natural-logarithm-transformed. A total of 170,104 
individuals had data on LDL-C, HDL-C and TG.

We fit a linear regression model adjusting for age, age2, sex and the 
first ten ancestral PCs. Residuals were then rank-based inverse-normal 
transformed and multiplied by the standard deviation. We next fit an 
MLMM for the rank-normalized residuals of LDL-C, HDL-C and TG, 
adjusting for age, age2, sex and the ten ancestral PCs, and a variance 

component for an empirically derived sparse kinship matrix to 
account for population structure, relatedness and correlation between 
phenotypes.

We next applied MultiSTAAR-O to perform multi-trait variant 
set analyses for rare variants (MAF < 1%), including gene-centric 
analysis of protein-coding genes using five coding variant functional 
categories; seven noncoding variant functional categories and rare 
variants in ncRNA genes; and genetic-region analysis using 2-kb sliding 
windows. For each analysis, the same set of annotations were incor-
porated as weights in MultiSTAAR-O (Supplementary Table 3). Our 
analysis was performed on the UK Biobank Research Analysis Platform 
(RAP). Specifically, the gene-centric coding analysis of five different 
masks for protein-coding genes across the genome required 1,183 
central processing unit (CPU) hours with 16 GB of memory on aver-
age. The gene-centric noncoding analysis of seven different masks 
for protein-coding genes across the genome would require 17,173 CPU 
hours with 32 GB of memory on average. The gene-centric noncoding 
analysis of seven different masks for ncRNA genes across the genome 
required 2,453 CPU hours with 21 GB of memory on average.

Analysis of non-lipid phenotypes in the TOPMed WGS data
We applied MultiSTAAR to identify rare variants (MAF < 1%) associated 
with non-lipid phenotypes in the TOPMed WGS data, including (1) 
multi-trait analysis of FG and FI (n = 21,731) and (2) multi-trait analysis 
of four inflammation biomarkers, including CRP, IL-6, Lp-PLA2 activity 
and Lp-PLA2 mass (n = 9,380). The definitions and phenotype harmoni-
zation for these two glycemic traits and four inflammation biomarker 
traits were the same as those used in previous studies43,44.

For each trait, we first fit a linear regression model adjusting for 
age and sex for each study-race/ethnicity group, with additional adjust-
ment of age2 and body mass index for FG and FI, ten ancestral PCs for FG  
and FI and 11 ancestral PCs for CRP, IL-6, Lp-PLA2 activity and Lp-PLA2 
mass. The residuals were transformed using the rank-based inverse- 
normal transformation. We then fit an MLMM for the rank-normalized 
residuals, adjusting for 10 and 11 ancestral PCs for glycemic and inflam-
mation biomarker analysis, respectively, study-ethnicity group indi-
cators and a variance component for the empirically derived kinship 
matrix to account for population structure, relatedness and correlation 
between phenotypes. The outputs of two corresponding MLMM null 
models were then used in the multi-trait rare variant analysis of gly-
cemic and inflammation biomarker traits by applying MultiSTAAR-O 
integrated in the STAARpipeline, including gene-centric analysis of 
protein-coding genes using five coding variant functional categories; 
seven noncoding variant functional categories and rare variants in 
ncRNA genes; and genetic-region analysis using 2-kb sliding windows. 
For each analysis, the same set of annotations were incorporated as 
weights in MultiSTAAR-O (Supplementary Table 3).

Genome build
All genome coordinates are given in NCBI GRCh38/UCSC hg38.

Statistics and reproducibility
Sample size was not predetermined. The multi-trait analysis consisted 
of 20 study cohorts of TOPMed Freeze 8 and had 61,838 samples with 
lipid traits. We did not use any study design that required randomiza-
tion or blinding.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
This Article used TOPMed Freeze 8 WGS data and lipids phenotype 
data. Genotype and phenotype data are both available in the database 
of Genotypes and Phenotypes. The TOPMed WGS data were from the 
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following 20 study cohorts (accession numbers provided in paren-
theses): Old Order Amish (phs000956.v1.p1), Atherosclerosis Risk in 
Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644), 
Coronary Artery Risk Development in Young Adults (phs001612), 
Cleveland Family Study (phs000954), Cardiovascular Health Study 
(phs001368), Diabetes Heart Study (phs001412), Framingham Heart 
Study (phs000974), Genetic Study of Atherosclerosis Risk (phs001218), 
Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic 
Epidemiology Network of Salt Sensitivity (phs001217), Genetics of 
Lipid Lowering Drugs and Diet Network (phs001359), Hispanic Com-
munity Health Study—Study of Latinos (phs001395), Hypertension 
Genetic Epidemiology Network and Genetic Epidemiology Network 
of Arteriopathy (phs001293), Jackson Heart Study (phs000964), 
Multi-Ethnic Study of Atherosclerosis (phs001416), San Antonio Family 
Heart Study (phs001215), Genome-Wide Association Study of Adipos-
ity in Samoans (phs000972), Taiwan Study of Hypertension using Rare 
Variants (phs001387) and Women’s Health Initiative (phs001237). 
The sample sizes, ancestry and phenotype summary statistics of 
these cohorts are provided in Supplementary Table 2. Source data for 
Figs. 2 and 3 and Extended Data Figs. 1 and 2 are available via Zenodo 
(https://doi.org/10.5281/zenodo.14213842)58. The UK Biobank analyses 
were conducted using the UK Biobank resource under application 
52008. The functional annotation data are publicly available and can 
be downloaded from the following links: GRCh38 CADD v1.4 (https:// 
cadd.gs.washington.edu/download); ANNOVAR dbNSFP v3.3a (https:// 
annovar.openbioinformatics.org/en/latest/user-guide/download); 
LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT); FATHMM- 
XF (http://fathmm.biocompute.org.uk/fathmm-xf); FANTOM5 CAGE  
(https://fantom.gsc.riken.jp/5/data); GeneCards (https://www.gen 
ecards.org; v4.7 for hg38); and Umap/Bismap (https://bismap.hoff 
manlab.org; ‘before March 2020’ version). In addition, recombination  
rate and nucleotide diversity were obtained from ref. 59. The whole- 
genome individual functional annotation data were assembled from  
a variety of sources, and the computed annotation PCs are available  
at the Functional Annotation of Variant-Online Resource (FAVOR) site  
(https://favor.genohub.org)60 and the FAVOR database (https://doi. 
org/10.7910/DVN/1VGTJI)61.

Code availability
MultiSTAAR is implemented as an open-source R package available 
at https://github.com/xihaoli/MultiSTAAR and https://hsph.harvard. 
edu/research/lin-lab/software. Data analysis was performed in R (4.1.0).  
STAAR v0.9.7 and MultiSTAAR v0.9.7 were used in simulation and real  
data analysis and implemented as open-source R packages available  
at https://github.com/xihaoli/STAAR (ref. 56) and https://github.com/ 
xihaoli/MultiSTAAR (ref. 54). The assembled functional annotation  
data were downloaded from FAVOR using Wget (https://www.gnu.org/ 
software/wget/wget.html).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Manhattan plots and Q-Q plots for unconditional 
gene-centric coding, noncoding and genetic region (2-kb sliding window) 
multi-trait analysis of fasting glucose (FG) and fasting insulin (FI) using 
TOPMed data (n = 21,731). a, Manhattan plots for unconditional gene-centric 
coding analysis of protein-coding genes. The horizontal line indicates a 
genome-wide MultiSTAAR-O P value threshold of 5.00× 10−7. The significant 
threshold is defined by multiple comparisons using the Bonferroni correction 
(0.05/ (20,000× 5) = 5.00× 10−7). Different symbols represent the 
MultiSTAAR-O P value of the protein-coding gene using different functional 
categories (putative loss-of-function, putative loss-of-function and disruptive 
missense, missense, disruptive missense, synonymous). b, Quantile-quantile 
plots for unconditional gene-centric coding analysis of protein-coding genes. 
Different symbols represent the MultiSTAAR-O P-value of the gene using different 
functional categories. c, Manhattan plots for unconditional gene-centric 
noncoding analysis of protein-coding genes. The horizontal line indicates a 
genome-wide MultiSTAAR-O P value threshold of 3.57× 10−7. The significant 
threshold is defined by multiple comparisons using the Bonferroni correction 

(0.05/ (20,000× 7) = 3.57× 10−7). Different symbols represent the 
MultiSTAAR-O P value of the protein-coding gene using different functional 
categories (upstream, downstream, UTR, promoter_CAGE, promoter_DHS, 
enhancer_CAGE, enhancer_DHS). Promoter_CAGE and promoter_DHS are the 
promoters with overlap of Cap Analysis of Gene Expression (CAGE) sites and 
DNase hypersensitivity (DHS) sites for a given gene, respectively. Enhancer_CAGE 
and enhancer_DHS are the enhancers in GeneHancer-predicted regions with the 
overlap of CAGE sites and DHS sites for a given gene, respectively. d, Quantile-
quantile plots for unconditional gene-centric noncoding analysis of protein-
coding genes. Different symbols represent the MultiSTAAR-O P-value of the gene 
using different functional categories. e, Manhattan plot showing the associations 
of 2.68 million 2-kb sliding windows versus −log10(P) of MultiSTAAR-O. The 
horizontal line indicates a genome-wide P value threshold of 1.86× 10−8.  
f, Quantile-quantile plot of 2-kb sliding window MultiSTAAR-O P values. In panels, 
a, c and e, the chromosome number are indicated by the colors of dots. In all 
panels, MultiSTAAR-O is a two-sided test.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Manhattan plots and Q-Q plots for unconditional 
gene-centric coding, noncoding and genetic region (2-kb sliding window) 
multi-trait analysis of C-reactive protein (CRP), interleukin-6 (IL-6), 
lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, and lipoprotein-
associated phospholipase A2 (Lp-PLA2) mass using TOPMed data (n = 9,380). 
a, Manhattan plots for unconditional gene-centric coding analysis of protein-
coding genes. The horizontal line indicates a genome-wide MultiSTAAR-O P value 
threshold of 5.00× 10−7. The significant threshold is defined by multiple 
comparisons using the Bonferroni correction (0.05/ (20,000× 5) = 5.00× 10−7).  
Different symbols represent the MultiSTAAR-O P value of the protein-coding 
gene using different functional categories (putative loss-of-function, putative 
loss-of-function and disruptive missense, missense, disruptive missense, 
synonymous). b, Quantile-quantile plots for unconditional gene-centric coding 
analysis of protein-coding genes. Different symbols represent the MultiSTAAR-O 
P-value of the gene using different functional categories. c, Manhattan plots for 
unconditional gene-centric noncoding analysis of protein-coding genes. The 
horizontal line indicates a genome-wide MultiSTAAR-O P value threshold of 

3.57× 10−7. The significant threshold is defined by multiple comparisons using 
the Bonferroni correction (0.05/ (20,000× 7) = 3.57× 10−7). Different symbols 
represent the MultiSTAAR-O P value of the protein-coding gene using different 
functional categories (upstream, downstream, UTR, promoter_CAGE, promoter_
DHS, enhancer_CAGE, enhancer_DHS). Promoter_CAGE and promoter_DHS are 
the promoters with overlap of Cap Analysis of Gene Expression (CAGE) sites and 
DNase hypersensitivity (DHS) sites for a given gene, respectively. Enhancer_CAGE 
and enhancer_DHS are the enhancers in GeneHancer predicted regions with the 
overlap of CAGE sites and DHS sites for a given gene, respectively. d, Quantile-
quantile plots for unconditional gene-centric noncoding analysis of protein-
coding genes. Different symbols represent the MultiSTAAR-O P-value of the gene 
using different functional categories. e, Manhattan plot showing the associations 
of 2.67 million 2-kb sliding windows versus −log10(P) of MultiSTAAR-O. The 
horizontal line indicates a genome-wide P value threshold of 1.87× 10−8.  
f, Quantile-quantile plot of 2-kb sliding window MultiSTAAR-O P values. In panels, 
a, c and e, the chromosome number are indicated by the colors of dots. In all 
panels, MultiSTAAR-O is a two-sided test.
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